Advertisement

Holographic studies of Einsteinian cubic gravity

  • Pablo Bueno
  • Pablo A. Cano
  • Alejandro Ruipérez
Open Access
Regular Article - Theoretical Physics

Abstract

Einsteinian cubic gravity provides a holographic toy model of a nonsupersymmetric CFT in three dimensions, analogous to the one defined by Quasi-topological gravity in four. The theory admits explicit non-hairy AdS4 black holes and allows for numerous exact calculations, fully nonperturbative in the new coupling. We identify several entries of the AdS/CFT dictionary for this theory, and study its thermodynamic phase space, finding interesting new phenomena. We also analyze the dependence of Rényi entropies for disk regions on universal quantities characterizing the CFT. In addition, we show that η/s is given by a non-analytic function of the ECG coupling, and that the existence of positive-energy black holes strictly forbids violations of the KSS bound. Along the way, we introduce a new method for evaluating Euclidean on-shell actions for general higher-order gravities possessing second-order linearized equations on AdS(d+1). Our generalized action involves the very same Gibbons-Hawking boundary term and counterterms valid for Einstein gravity, which now appear weighted by the universal charge a* controlling the entanglement entropy across a spherical region in the CFT dual to the corresponding higher-order theory.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence Black Holes in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    M.T. Grisaru, A.E.M. van de Ven and D. Zanon, Four Loop β-function for the N = 1 and N = 2 Supersymmetric Nonlinear σ-model in Two-Dimensions, Phys. Lett. B 173 (1986) 423 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D.J. Gross and E. Witten, Superstring Modifications of Einstein’s Equations, Nucl. Phys. B 277 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D.M. Hofman, Higher Derivative Gravity, Causality and Positivity of Energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  12. [12]
    M. Blau, K.S. Narain and E. Gava, On subleading contributions to the AdS/CFT trace anomaly, JHEP 09 (1999) 018 [hep-th/9904179] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Mezei, Entanglement entropy across a deformed sphere, Phys. Rev. D 91 (2015) 045038 [arXiv:1411.7011] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    P. Bueno, R.C. Myers and W. Witczak-Krempa, Universality of corner entanglement in conformal field theories, Phys. Rev. Lett. 115 (2015) 021602 [arXiv:1505.04804] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Bueno and R.C. Myers, Corner contributions to holographic entanglement entropy, JHEP 08 (2015) 068 [arXiv:1505.07842] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to eta/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear Viscosity from Effective Couplings of Gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [INSPIRE].ADSGoogle Scholar
  23. [23]
    X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Viscosity Bound, Causality Violation and Instability with Stringy Correction and Charge, JHEP 10 (2008) 009 [arXiv:0808.2354] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic Calculations of Renyi Entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  26. [26]
    L.-Y. Hung, R.C. Myers and M. Smolkin, Twist operators in higher dimensions, JHEP 10 (2014) 178 [arXiv:1407.6429] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Entanglement Entropy in Lovelock Gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    L. Bianchi, S. Chapman, X. Dong, D.A. Galante, M. Meineri and R.C. Myers, Shape dependence of holographic Rényi entropy in general dimensions, JHEP 11 (2016) 180 [arXiv:1607.07418] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  29. [29]
    D. Lovelock, Divergence-free tensorial concomitants, Aequat. Math. 4 (1970) 127.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  32. [32]
    J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7 /CFT 6 , Gauss-Bonnet Gravity and Viscosity Bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [INSPIRE].zbMATHCrossRefGoogle Scholar
  33. [33]
    A. Buchel, J. Escobedo, R.C. Myers, M.F. Paulos, A. Sinha and M. Smolkin, Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  34. [34]
    J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Lovelock Gravities and Black Holes, JHEP 06 (2010) 008 [arXiv:0912.1877] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    X.O. Camanho and J.D. Edelstein, Causality in AdS/CFT and Lovelock theory, JHEP 06 (2010) 099 [arXiv:0912.1944] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    S. Grozdanov and A.O. Starinets, On the universal identity in second order hydrodynamics, JHEP 03 (2015) 007 [arXiv:1412.5685] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    S. Grozdanov and A.O. Starinets, Second-order transport, quasinormal modes and zero-viscosity limit in the Gauss-Bonnet holographic fluid, JHEP 03 (2017) 166 [arXiv:1611.07053] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    T. Andrade, J. Casalderrey-Solana and A. Ficnar, Holographic Isotropisation in Gauss-Bonnet Gravity, JHEP 02 (2017) 016 [arXiv:1610.08987] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    R.A. Konoplya and A. Zhidenko, Quasinormal modes of Gauss-Bonnet-AdS black holes: towards holographic description of finite coupling, JHEP 09 (2017) 139 [arXiv:1705.07732] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    R.C. Myers and B. Robinson, Black Holes in Quasi-topological Gravity, JHEP 08 (2010) 067 [arXiv:1003.5357] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    J. Oliva and S. Ray, A new cubic theory of gravity in five dimensions: Black hole, Birkhoff ’s theorem and C-function, Class. Quant. Grav. 27 (2010) 225002 [arXiv:1003.4773] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    X.O. Camanho, J.D. Edelstein and J.M. Sánchez De Santos, Lovelock theory and the AdS/CFT correspondence, Gen. Rel. Grav. 46 (2014) 1637 [arXiv:1309.6483] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP 08 (2010) 035 [arXiv:1004.2055] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    M. Kulaxizi and A. Parnachev, Supersymmetry Constraints in Holographic Gravities, Phys. Rev. D 82 (2010) 066001 [arXiv:0912.4244] [INSPIRE].ADSGoogle Scholar
  45. [45]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    R.G. Leigh and A.C. Petkou, Holography of the N = 1 higher spin theory on AdS 4, JHEP 06 (2003) 011 [hep-th/0304217] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].
  50. [50]
    P. Bueno and P.A. Cano, Einsteinian cubic gravity, Phys. Rev. D 94 (2016) 104005 [arXiv:1607.06463] [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    R.A. Hennigar and R.B. Mann, Black holes in Einsteinian cubic gravity, Phys. Rev. D 95 (2017) 064055 [arXiv:1610.06675] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    P. Bueno and P.A. Cano, Four-dimensional black holes in Einsteinian cubic gravity, Phys. Rev. D 94 (2016) 124051 [arXiv:1610.08019] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    R.A. Hennigar, D. Kubizňák and R.B. Mann, Generalized quasitopological gravity, Phys. Rev. D 95 (2017) 104042 [arXiv:1703.01631] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    P. Bueno and P.A. Cano, On black holes in higher-derivative gravities, Class. Quant. Grav. 34 (2017) 175008 [arXiv:1703.04625] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    J. Ahmed, R.A. Hennigar, R.B. Mann and M. Mir, Quintessential Quartic Quasi-topological Quartet, JHEP 05 (2017) 134 [arXiv:1703.11007] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. [56]
    P. Bueno and P.A. Cano, Universal black hole stability in four dimensions, Phys. Rev. D 96 (2017) 024034 [arXiv:1704.02967] [INSPIRE].ADSGoogle Scholar
  57. [57]
    M.H. Dehghani, A. Bazrafshan, R.B. Mann, M.R. Mehdizadeh, M. Ghanaatian and M.H. Vahidinia, Black Holes in Quartic Quasitopological Gravity, Phys. Rev. D 85 (2012) 104009 [arXiv:1109.4708] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M.H. Dehghani and M.H. Vahidinia, Quartic Quasi-topological Gravity, Black Holes and Holography, JHEP 10 (2013) 210 [arXiv:1307.0330] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A. Cisterna, L. Guajardo, M. Hassaine and J. Oliva, Quintic quasi-topological gravity, JHEP 04 (2017) 066 [arXiv:1702.04676] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    R.A. Hennigar, Criticality for charged black branes, JHEP 09 (2017) 082 [arXiv:1705.07094] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  61. [61]
    X.-H. Feng, H. Huang, Z.-F. Mai and H. Lü, Bounce Universe and Black Holes from Critical Einsteinian Cubic Gravity, Phys. Rev. D 96 (2017) 104034 [arXiv:1707.06308] [INSPIRE].ADSGoogle Scholar
  62. [62]
    R.A. Hennigar, M.B.J. Poshteh and R.B. Mann, Shadows, Signals and Stability in Einsteinian Cubic Gravity, arXiv:1801.03223 [INSPIRE].
  63. [63]
    A. Dey, P. Roy and T. Sarkar, On Holographic Rényi Entropy in Some Modified Theories of Gravity, arXiv:1609.02290 [INSPIRE].
  64. [64]
    P. Bueno, P.A. Cano, V.S. Min and M.R. Visser, Aspects of general higher-order gravities, Phys. Rev. D 95 (2017) 044010 [arXiv:1610.08519] [INSPIRE].ADSMathSciNetGoogle Scholar
  65. [65]
    L.F. Abbott and S. Deser, Stability of Gravity with a Cosmological Constant, Nucl. Phys. B 195 (1982) 76 [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  66. [66]
    S. Deser and B. Tekin, Energy in generic higher curvature gravity theories, Phys. Rev. D 67 (2003) 084009 [hep-th/0212292] [INSPIRE].ADSMathSciNetGoogle Scholar
  67. [67]
    J.T. Wheeler, Symmetric Solutions to the Gauss-Bonnet Extended Einstein Equations, Nucl. Phys. B 268 (1986) 737 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    J.T. Wheeler, Symmetric Solutions to the Maximally Gauss-Bonnet Extended Einstein Equations, Nucl. Phys. B 273 (1986) 732 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. [69]
    D.G. Boulware and S. Deser, String Generated Gravity Models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].ADSMathSciNetGoogle Scholar
  71. [71]
    M.H. Dehghani and R. Pourhasan, Thermodynamic instability of black holes of third order Lovelock gravity, Phys. Rev. D 79 (2009) 064015 [arXiv:0903.4260] [INSPIRE].ADSMathSciNetGoogle Scholar
  72. [72]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar
  73. [73]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  74. [74]
    R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP 01 (2015) 039 [arXiv:1411.1062] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    G. Compère, The Kerr/CFT correspondence and its extensions, Living Rev. Rel. 15 (2012) 11 [arXiv:1203.3561] [INSPIRE].zbMATHCrossRefGoogle Scholar
  76. [76]
    N. Ohta and T. Torii, Global Structure of Black Holes in String Theory with Gauss-Bonnet Correction in Various Dimensions, Prog. Theor. Phys. 124 (2010) 207 [arXiv:1004.2779] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  77. [77]
    A. Karasu, E. Kenar and B. Tekin, Minimal extension of Einstein’s theory: The quartic gravity, Phys. Rev. D 93 (2016) 084040 [arXiv:1602.02567] [INSPIRE].ADSMathSciNetGoogle Scholar
  78. [78]
    P. Bueno, P.A. Cano, A.O. Lasso and P.F. Ramírez, f(Lovelock) theories of gravity, JHEP 04 (2016) 028 [arXiv:1602.07310] [INSPIRE].
  79. [79]
    Y.-Z. Li, H.-S. Liu and H. Lü, Quasi-Topological Ricci Polynomial Gravities, JHEP 02 (2018) 166 [arXiv:1708.07198] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  80. [80]
    Y.-Z. Li, H. Lü and J.-B. Wu, Causality and a-theorem Constraints on Ricci Polynomial and Riemann Cubic Gravities, Phys. Rev. D 97 (2018) 024023 [arXiv:1711.03650] [INSPIRE].ADSGoogle Scholar
  81. [81]
    J.W. York Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].ADSGoogle Scholar
  83. [83]
    J. Smolic and M. Taylor, Higher derivative effects for 4d AdS gravity, JHEP 06 (2013) 096 [arXiv:1301.5205] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  84. [84]
    C. Teitelboim and J. Zanelli, Dimensionally continued topological gravitation theory in Hamiltonian form, Class. Quant. Grav. 4 (1987) L125 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  85. [85]
    R.C. Myers, Higher Derivative Gravity, Surface Terms and String Theory, Phys. Rev. D 36 (1987) 392 [INSPIRE].ADSMathSciNetGoogle Scholar
  86. [86]
    M.S. Madsen and J.D. Barrow, de Sitter Ground States and Boundary Terms in Generalized Gravity, Nucl. Phys. B 323 (1989) 242 [INSPIRE].
  87. [87]
    E. Dyer and K. Hinterbichler, Boundary Terms, Variational Principles and Higher Derivative Modified Gravity, Phys. Rev. D 79 (2009) 024028 [arXiv:0809.4033] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  88. [88]
    A. Guarnizo, L. Castaneda and J.M. Tejeiro, Boundary Term in Metric f(R) Gravity: Field Equations in the Metric Formalism, Gen. Rel. Grav. 42 (2010) 2713 [arXiv:1002.0617] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  89. [89]
    N. Deruelle, M. Sasaki, Y. Sendouda and D. Yamauchi, Hamiltonian formulation of f(Riemann) theories of gravity, Prog. Theor. Phys. 123 (2010) 169 [arXiv:0908.0679] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  90. [90]
    A. Teimouri, S. Talaganis, J. Edholm and A. Mazumdar, Generalised Boundary Terms for Higher Derivative Theories of Gravity, JHEP 08 (2016) 144 [arXiv:1606.01911] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  91. [91]
    A. Yale, Simple counterterms for asymptotically AdS spacetimes in Lovelock gravity, Phys. Rev. D 84 (2011) 104036 [arXiv:1107.1250] [INSPIRE].ADSGoogle Scholar
  92. [92]
    R.B. Mann, Misner string entropy, Phys. Rev. D 60 (1999) 104047 [hep-th/9903229] [INSPIRE].ADSMathSciNetGoogle Scholar
  93. [93]
    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  94. [94]
    Y. Brihaye and E. Radu, Black objects in the Einstein-Gauss-Bonnet theory with negative cosmological constant and the boundary counterterm method, JHEP 09 (2008) 006 [arXiv:0806.1396] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  95. [95]
    D. Astefanesei, N. Banerjee and S. Dutta, (Un)attractor black holes in higher derivative AdS gravity, JHEP 11 (2008) 070 [arXiv:0806.1334] [INSPIRE].
  96. [96]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  97. [97]
    C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  98. [98]
    A. Schwimmer and S. Theisen, Entanglement Entropy, Trace Anomalies and Holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  99. [99]
    M.H. Dehghani and M.H. Vahidinia, Surface Terms of Quasitopological Gravity and Thermodynamics of Charged Rotating Black Branes, Phys. Rev. D 84 (2011) 084044 [arXiv:1108.4235] [INSPIRE].ADSGoogle Scholar
  100. [100]
    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  101. [101]
    Y. Huh and P. Strack, Stress tensor and current correlators of interacting conformal field theories in 2+1 dimensions: Fermionic Dirac matter coupled to U(1) gauge field, JHEP 01 (2015) 147 [Erratum ibid. 03 (2016) 054] [arXiv:1410.1902] [INSPIRE].
  102. [102]
    K. Diab, L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, On C J and C T in the Gross-Neveu and O(N) models, J. Phys. A 49 (2016) 405402 [arXiv:1601.07198] [INSPIRE].zbMATHGoogle Scholar
  103. [103]
    S. Giombi, G. Tarnopolsky and I.R. Klebanov, On C J and C T in Conformal QED, JHEP 08 (2016) 156 [arXiv:1602.01076] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  104. [104]
    A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [INSPIRE].ADSMathSciNetGoogle Scholar
  105. [105]
    T. Nishioka and K. Yonekura, On RG Flow of τ RR for Supersymmetric Field Theories in Three-Dimensions, JHEP 05 (2013) 165 [arXiv:1303.1522] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  106. [106]
    E. Perlmutter, A universal feature of CFT Rényi entropy, JHEP 03 (2014) 117 [arXiv:1308.1083] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  107. [107]
    W. Witczak-Krempa, Constraining Quantum Critical Dynamics: (2 + 1)D Ising Model and Beyond, Phys. Rev. Lett. 114 (2015) 177201 [arXiv:1501.03495] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    A. Lucas, T. Sierens and W. Witczak-Krempa, Quantum critical response: from conformal perturbation theory to holography, JHEP 07 (2017) 149 [arXiv:1704.05461] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  109. [109]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric Field Theories on Three-Manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  110. [110]
    N. Bobev, P. Bueno and Y. Vreys, Comments on Squashed-sphere Partition Functions, JHEP 07 (2017) 093 [arXiv:1705.00292] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  111. [111]
    S. Fischetti and T. Wiseman, On universality of holographic results for (2 + 1)-dimensional CFTs on curved spacetimes, JHEP 12 (2017) 133 [arXiv:1707.03825] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  112. [112]
    H. Liu and A.A. Tseytlin, D = 4 superYang-Mills, D = 5 gauged supergravity and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  113. [113]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
  114. [114]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  115. [115]
    X.O. Camanho and J.D. Edelstein, A Lovelock black hole bestiary, Class. Quant. Grav. 30 (2013) 035009 [arXiv:1103.3669] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  116. [116]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  117. [117]
    G.T. Horowitz and R.C. Myers, The AdS/CFT correspondence and a new positive energy conjecture for general relativity, Phys. Rev. D 59 (1998) 026005 [hep-th/9808079] [INSPIRE].ADSMathSciNetGoogle Scholar
  118. [118]
    S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  119. [119]
    Y.M. Cho and I.P. Neupane, Anti-de Sitter black holes, thermal phase transition and holography in higher curvature gravity, Phys. Rev. D 66 (2002) 024044 [hep-th/0202140] [INSPIRE].ADSMathSciNetGoogle Scholar
  120. [120]
    Y.S. Myung, No Hawking-Page phase transition in three dimensions, Phys. Lett. B 624 (2005) 297 [hep-th/0506096] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  121. [121]
    X.O. Camanho, J.D. Edelstein, G. Giribet and A. Gomberoff, Generalized phase transitions in Lovelock gravity, Phys. Rev. D 90 (2014) 064028 [arXiv:1311.6768] [INSPIRE].ADSGoogle Scholar
  122. [122]
    A. Rényi, On measures of entropy and information, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, University of California Press (1961), pg. 547.Google Scholar
  123. [123]
    A. Rényi, On the foundations of information theory, Rev. Int. Stat. Inst. 33 (1965) 1.MathSciNetzbMATHCrossRefGoogle Scholar
  124. [124]
    I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Renyi Entropies for Free Field Theories, JHEP 04 (2012) 074 [arXiv:1111.6290] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  125. [125]
    N. Laflorencie, Quantum entanglement in condensed matter systems, Phys. Rept. 646 (2016) 1 [arXiv:1512.03388] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  126. [126]
    C.-S. Chu and R.-X. Miao, Universality in the shape dependence of holographic Rényi entropy for general higher derivative gravity, JHEP 12 (2016) 036 [arXiv:1608.00328] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  127. [127]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  128. [128]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  129. [129]
    D.V. Fursaev, A. Patrushev and S.N. Solodukhin, Distributional Geometry of Squashed Cones, Phys. Rev. D 88 (2013) 044054 [arXiv:1306.4000] [INSPIRE].ADSGoogle Scholar
  130. [130]
    X. Dong, Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP 01 (2014) 044 [arXiv:1310.5713] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  131. [131]
    J. Camps, Generalized entropy and higher derivative Gravity, JHEP 03 (2014) 070 [arXiv:1310.6659] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  132. [132]
    V.G.M. Puletti and R. Pourhasan, Non-analyticity of holographic Rényi entropy in Lovelock gravity, JHEP 08 (2017) 002 [arXiv:1704.08731] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  133. [133]
    D.A. Galante and R.C. Myers, Holographic Renyi entropies at finite coupling, JHEP 08 (2013) 063 [arXiv:1305.7191] [INSPIRE].ADSCrossRefGoogle Scholar
  134. [134]
    A. Belin, A. Maloney and S. Matsuura, Holographic Phases of Renyi Entropies, JHEP 12 (2013) 050 [arXiv:1306.2640] [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    H. Casini, M. Huerta, R.C. Myers and A. Yale, Mutual information and the F-theorem, JHEP 10 (2015) 003 [arXiv:1506.06195] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  136. [136]
    B. Swingle, Structure of entanglement in regulated Lorentz invariant field theories, arXiv:1304.6402 [INSPIRE].
  137. [137]
    P. Bueno, R.C. Myers and W. Witczak-Krempa, Universal corner entanglement from twist operators, JHEP 09 (2015) 091 [arXiv:1507.06997] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  138. [138]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].zbMATHGoogle Scholar
  139. [139]
    B. Swingle, Mutual information and the structure of entanglement in quantum field theory, arXiv:1010.4038 [INSPIRE].
  140. [140]
    S. Giombi, S. Prakash and X. Yin, A Note on CFT Correlators in Three Dimensions, JHEP 07 (2013) 105 [arXiv:1104.4317] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  141. [141]
    J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP 09 (2011) 045 [arXiv:1104.2846] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  142. [142]
    S.D. Chowdhury, J.R. David and S. Prakash, Constraints on parity violating conformal field theories in d = 3, JHEP 11 (2017) 171 [arXiv:1707.03007] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  143. [143]
    S. Cremonini, The Shear Viscosity to Entropy Ratio: A Status Report, Mod. Phys. Lett. B 25 (2011) 1867 [arXiv:1108.0677] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  144. [144]
    X.O. Camanho, J.D. Edelstein and M.F. Paulos, Lovelock theories, holography and the fate of the viscosity bound, JHEP 05 (2011) 127 [arXiv:1010.1682] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  145. [145]
    I. Fouxon, G. Betschart and J.D. Bekenstein, The Bound on viscosity and the generalized second law of thermodynamics, Phys. Rev. D 77 (2008) 024016 [arXiv:0710.1429] [INSPIRE].ADSMathSciNetGoogle Scholar
  146. [146]
    M.F. Paulos, Transport coefficients, membrane couplings and universality at extremality, JHEP 02 (2010) 067 [arXiv:0910.4602] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  147. [147]
    G. Pasini and C.S. Shahbazi, Five-dimensional null and time-like supersymmetric geometries, Class. Quant. Grav. 33 (2016) 175003 [arXiv:1512.02211] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  148. [148]
    Z.-Y. Fan, Note on the Noether charge and holographic transports, Phys. Rev. D 97 (2018) 066013 [arXiv:1801.07870] [INSPIRE].ADSGoogle Scholar
  149. [149]
    X.-H. Ge and S.-J. Sin, Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant, JHEP 05 (2009) 051 [arXiv:0903.2527] [INSPIRE].ADSCrossRefGoogle Scholar
  150. [150]
    R. Brustein and A.J.M. Medved, The Ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev. D 79 (2009) 021901 [arXiv:0808.3498] [INSPIRE].ADSGoogle Scholar
  151. [151]
    F.-W. Shu, The Quantum Viscosity Bound In Lovelock Gravity, Phys. Lett. B 685 (2010) 325 [arXiv:0910.0607] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  152. [152]
    S. Grozdanov and A.O. Starinets, Zero-viscosity limit in a holographic Gauss-Bonnet liquid, Theor. Math. Phys. 182 (2015) 61 [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  153. [153]
    S. Parvizi and M. Sadeghi, Holographic Aspects of a Higher Curvature Massive Gravity, arXiv:1704.00441 [INSPIRE].
  154. [154]
    D. Carmi, R.C. Myers and P. Rath, Comments on Holographic Complexity, JHEP 03 (2017) 118 [arXiv:1612.00433] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  155. [155]
    L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016) 44 [arXiv:1403.5695] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  156. [156]
    D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].ADSGoogle Scholar
  157. [157]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].ADSCrossRefGoogle Scholar
  158. [158]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].ADSMathSciNetGoogle Scholar
  159. [159]
    L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Instituut voor Theoretische FysicaKU LeuvenLeuvenBelgium
  2. 2.Instituto de Física Teórica UAM/CSICMadridSpain
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations