On the on-shell: the action of AdS4 black holes

Open Access
Regular Article - Theoretical Physics
  • 22 Downloads

Abstract

We compute the on-shell action of static, BPS black holes in AdS4 from \( \mathcal{N}=2 \) gauged supergravity coupled to vector multiplets and show that for a certain class it is equal to minus the entropy of the black hole. Holographic renormalization is used to demonstrate that with Neumann boundary conditions on the scalar fields, the divergent and finite contributions from the asymptotic boundary vanish. The entropy arises from the extrinsic curvature on Σ g × S1 evaluated at the horizon, where Σ g may have any genus g ≥ 0. This provides a clarification of the equivalence between the partition function of the twisted ABJM theory on Σ g × S1 and the entropy of the dual black hole solutions. It also demonstrates that the complete entropy resides on the AdS2 × Σ g horizon geometry, implying the absence of hair for these gravity solutions.

Keywords

AdS-CFT Correspondence Black Holes Black Holes in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS 4 from supersymmetric localization, JHEP 05 (2016) 054 [arXiv:1511.04085] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F. Benini, K. Hristov and A. Zaffaroni, Exact microstate counting for dyonic black holes in AdS4, Phys. Lett. B 771 (2017) 462 [arXiv:1608.07294] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    N. Halmagyi, BPS Black Hole Horizons in N = 2 Gauged Supergravity, JHEP 02 (2014) 051 [arXiv:1308.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    N. Halmagyi, Static BPS black holes in AdS 4 with general dyonic charges, JHEP 03 (2015) 032 [arXiv:1408.2831] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F. Azzurli, N. Bobev, P.M. Crichigno, V.S. Min and A. Zaffaroni, A universal counting of black hole microstates in AdS 4, JHEP 02 (2018) 054 [arXiv:1707.04257] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Gnecchi and C. Toldo, First order flow for non-extremal AdS black holes and mass from holographic renormalization, JHEP 10 (2014) 075 [arXiv:1406.0666] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    D.Z. Freedman and S.S. Pufu, The holography of F-maximization, JHEP 03 (2014) 135 [arXiv:1302.7310] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    D.Z. Freedman, K. Pilch, S.S. Pufu and N.P. Warner, Boundary Terms and Three-Point Functions: An AdS/CFT Puzzle Resolved, JHEP 06 (2017) 053 [arXiv:1611.01888] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    I. Papadimitriou, Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT, JHEP 05 (2007) 075 [hep-th/0703152] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.W. York Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Toldo and S. Vandoren, Static nonextremal AdS4 black hole solutions, JHEP 09 (2012) 048 [arXiv:1207.3014] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    A. Gnecchi and N. Halmagyi, Supersymmetric black holes in AdS 4 from very special geometry, JHEP 04 (2014) 173 [arXiv:1312.2766] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    D. Klemm, A. Marrani, N. Petri and C. Santoli, BPS black holes in a non-homogeneous deformation of the STU model of N = 2, D = 4 gauged supergravity, JHEP 09 (2015) 205 [arXiv:1507.05553] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    S. Katmadas, Static BPS black holes in U(1) gauged supergravity, JHEP 09 (2014) 027 [arXiv:1405.4901] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry, JHEP 01 (2013) 053 [arXiv:1207.2679] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    A. Gnecchi and C. Toldo, On the non-BPS first order flow in N = 2 U(1)-gauged Supergravity, JHEP 03 (2013) 088 [arXiv:1211.1966] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Halmagyi and T. Vanel, AdS Black Holes from Duality in Gauged Supergravity, JHEP 04 (2014) 130 [arXiv:1312.5430] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    M. Cvetič, H. Lü and C.N. Pope, Geometry of the embedding of supergravity scalar manifolds in D = 11 and D = 10, Nucl. Phys. B 584 (2000) 149 [hep-th/0002099] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  30. [30]
    D.D.K. Chow and G. Compère, Dyonic AdS black holes in maximal gauged supergravity, Phys. Rev. D 89 (2014) 065003 [arXiv:1311.1204] [INSPIRE].ADSGoogle Scholar
  31. [31]
    L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    S. Hyun, W.T. Kim and J. Lee, Statistical entropy and AdS/CFT correspondence in BTZ black holes, Phys. Rev. D 59 (1999) 084020 [hep-th/9811005] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    A. Cabo-Bizet, U. Kol, L.A. Pando Zayas, I. Papadimitriou and V. Rathee, Entropy functional and the holographic attractor mechanism, arXiv:1712.01849 [INSPIRE].
  39. [39]
    S.L. Cacciatori, D. Klemm and M. Rabbiosi, Duality invariance in Fayet-Iliopoulos gauged supergravity, JHEP 09 (2016) 088 [arXiv:1606.05160] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    N. Halmagyi, M. Petrini and A. Zaffaroni, BPS black holes in AdS 4 from M-theory, JHEP 08 (2013) 124 [arXiv:1305.0730] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    H. Erbin and N. Halmagyi, Abelian hypermultiplet gaugings and BPS vacua in \( \mathcal{N}=2 \) supergravity, JHEP 05 (2015) 122 [arXiv:1409.6310] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    S. Chimento, D. Klemm and N. Petri, Supersymmetric black holes and attractors in gauged supergravity with hypermultiplets, JHEP 06 (2015) 150 [arXiv:1503.09055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    D. Klemm, N. Petri and M. Rabbiosi, Symplectically invariant flow equations for N = 2, D = 4 gauged supergravity with hypermultiplets, JHEP 04 (2016) 008 [arXiv:1602.01334] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    R. Monten and C. Toldo, Black holes with halos, Class. Quant. Grav. 35 (2018) 035001 [arXiv:1612.02399] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  45. [45]
    A. Guarino and J. Tarrío, BPS black holes from massive IIA on S 6, JHEP 09 (2017) 141 [arXiv:1703.10833] [INSPIRE].
  46. [46]
    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Sorbonne Universités, UPMC Paris 06, UMR 7589, LPTHEParisFrance
  2. 2.CNRS, UMR 7589, LPTHEParisFrance

Personalised recommendations