Spiked monopoles

Open Access
Regular Article - Theoretical Physics
  • 16 Downloads

Abstract

We introduce the spiked monopole, which is a ’t Hooft-Polyakov monopole with two charged scalar Higgs fields, of which one enjoys a quartic self-interaction. The free Higgs field behaves as in a BPS monopole, reducing the inter-monopole repulsion. The other Higgs has a spiked profile similar to a non-BPS monopole. Using the methods from numerical relativity recently adapted to the Yang-Mills-Higgs theory by Vachaspati, we simulate the interactions of such monopoles. During the long lifetime of these simulations the individual monopoles are stable. We find that they are always repulsive, with a small repulsion only when the interaction Higgs VEV is proportionately small. We briefly comment on implications for giant monopole dark matter models and on supermassive black hole seeding by the spikes.

Keywords

Solitons Monopoles and Instantons Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Evslin and S.B. Gudnason, Dwarf Galaxy Sized Monopoles as Dark Matter?, arXiv:1202.0560 [INSPIRE].
  2. [2]
    J. Markar Evslin, Giant monopoles as a dark matter candidate, J. Phys. Conf. Ser. 496 (2014) 012023 [arXiv:1311.1627] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    B. Moore, T.R. Quinn, F. Governato, J. Stadel and G. Lake, Cold collapse and the core catastrophe, Mon. Not. Roy. Astron. Soc. 310 (1999) 1147 [astro-ph/9903164] [INSPIRE].
  4. [4]
    M. Persic, P. Salucci and F. Stel, The universal rotation curve of spiral galaxies: 1. The Dark matter connection, Mon. Not. Roy. Astron. Soc. 281 (1996) 27 [astro-ph/9506004] [INSPIRE].
  5. [5]
    A.A. Klypin, A.V. Kravtsov, O. Valenzuela and F. Prada, Where are the missing Galactic satellites?, Astrophys. J. 522 (1999) 82 [astro-ph/9901240] [INSPIRE].
  6. [6]
    B. Moore et al., Dark matter substructure within galactic halos, Astrophys. J. 524 (1999) L19 [astro-ph/9907411] [INSPIRE].
  7. [7]
    S.B. Gudnason and J. Evslin, Global monopoles of charge 2, Phys. Rev. D 92 (2015) 045044 [arXiv:1507.03400] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    A. Vikman, Superconducting Dark Matter, arXiv:1712.10311 [INSPIRE].
  9. [9]
    G.W. Gibbons and N.S. Manton, Classical and Quantum Dynamics of BPS Monopoles, Nucl. Phys. B 274 (1986) 183 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    S.Y. Kim, A.H.G. Peter and D. Wittman, In the Wake of Dark Giants: New Signatures of Dark Matter Self Interactions in Equal Mass Mergers of Galaxy Clusters, Mon. Not. Roy. Astron. Soc. 469 (2017) 1414 [arXiv:1608.08630] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D. Wittman, N. Golovich and W.A. Dawson, The Mismeasure of Mergers: Revised Limits on Self-interacting Dark Matter in Merging Galaxy Clusters, arXiv:1701.05877 [INSPIRE].
  12. [12]
    N. Afshordi, P. McDonald and D.N. Spergel, Primordial black holes as dark matter: The Power spectrum and evaporation of early structures, Astrophys. J. 594 (2003) L71 [astro-ph/0302035] [INSPIRE].
  13. [13]
    T. Lacroix, Dynamical constraints on a dark matter density spike at the Galactic Centre from stellar orbits, arXiv:1801.01308 [INSPIRE].
  14. [14]
    E. Bañados et al., An 800 million solar mass black hole in a significantly neutral universe at redshift 7.5, Nature 553 (2018) 473 [arXiv:1712.01860] [INSPIRE].
  15. [15]
    M. Volonteri, Formation of Supermassive Black Holes, Astron. Astrophys. Rev. 18 (2010) 279 [arXiv:1003.4404] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Ben-Ami, A. Vikhlinin and A. Loeb, SMBH Seeds: Model Discrimination with High Energy Emission Based on Scaling Relation Evolution, Astrophys. J. 854 (2018) 4 [arXiv:1712.03207] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J.L. Bernal, A. Raccanelli, L. Verde and J. Silk, Signatures of primordial black holes as seeds of supermassive black holes, arXiv:1712.01311 [INSPIRE].
  18. [18]
    A.D. Dolgov, Primordial Black Holes and Cosmological Problems, in 18th Lomonosov Conference on Elementary Particle Physics, Moscow, Russia, August 24-30, 2017 [arXiv:1712.08789] [INSPIRE].
  19. [19]
    P. Breitenlohner, P. Forgacs and D. Maison, Gravitating monopole solutions, Nucl. Phys. B 383 (1992) 357 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    T. Vachaspati and A. Achucarro, Semilocal cosmic strings, Phys. Rev. D 44 (1991) 3067 [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    M. Eto et al., On the moduli space of semilocal strings and lumps, Phys. Rev. D 76 (2007) 105002 [arXiv:0704.2218] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    T. Vachaspati, Creation of Magnetic Monopoles in Classical Scattering, Phys. Rev. Lett. 117 (2016) 181601 [arXiv:1607.07460] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S.A. Teukolsky, On the stability of the iterated Crank-Nicholson method in numerical relativity, Phys. Rev. D 61 (2000) 087501 [gr-qc/9909026] [INSPIRE].
  24. [24]
    N.S. Manton, The Force Between ’t Hooft-Polyakov Monopoles, Nucl. Phys. B 126 (1977) 525 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    Q. Yu, Evolution of massive binary black holes, Mon. Not. Roy. Astron. Soc. 331 (2002) 935 [astro-ph/0109530] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute of Modern PhysicsLanzhouChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations