NNLO predictions for Z-boson pair production at the LHC
Open Access
Regular Article - Theoretical PhysicsFirst Online:
Received:
Revised:
Accepted:
- 16 Downloads
Abstract
We present a calculation of the NNLO QCD corrections to Z-boson pair production at hadron colliders, based on the N-jettiness method for the real radiation parts. We discuss the size and shape of the perturbative corrections along with their associated scale uncertainties and compare our results to recent LHC data at \( \sqrt{s}=13 \) TeV.
Keywords
NLO Computations QCD Phenomenology Download
to read the full article text
Notes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
- [1]ATLAS and CMS collaborations, Combination of results from the ATLAS and CMS experiments on anomalous triple gauge couplings in ZZ production from pp collisions at a centre-of-mass energy of 7 TeV at the LHC, ATLAS-CONF-2016-036 (2016) [CMS-PAS-SMP-15-001] [INSPIRE].
- [2]CMS collaboration, Measurement of W + W − and ZZ production cross sections in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 721 (2013) 190 [arXiv:1301.4698] [INSPIRE].
- [3]CMS collaboration, Measurements of the ZZ production cross sections in the 2l2ν channel in proton-proton collisions at \( \sqrt{s}=7 \) and 8 TeV and combined constraints on triple gauge couplings, Eur. Phys. J. C 75 (2015) 511 [arXiv:1503.05467] [INSPIRE].
- [4]ATLAS collaboration, Measurement of the ZZ production cross section in proton-proton collisions at \( \sqrt{s}=8 \) TeV using the ZZ → ℓ − ℓ + ℓ′− ℓ′+ and \( ZZ\to {\ell}^{-}{\ell}^{+}\nu \overline{\nu} \) channels with the ATLAS detector, JHEP 01 (2017) 099 [arXiv:1610.07585] [INSPIRE].
- [5]ATLAS collaboration, Measurement of the ZZ Production Cross Section in pp Collisions at \( \sqrt{s}=13 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 116 (2016) 101801 [arXiv:1512.05314] [INSPIRE].
- [6]CMS collaboration, Measurement of the ZZ production cross section and Z → ℓ + ℓ − ℓ ′+ ℓ ′− branching fraction in pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 763 (2016) 280 [Erratum ibid. B 772 (2017) 884] [arXiv:1607.08834] [INSPIRE].
- [7]ATLAS collaboration, ZZ → ℓ + ℓ − ℓ ′+ ℓ ′− cross-section measurements and search for anomalous triple gauge couplings in 13 TeV pp collisions with the ATLAS detector, Phys. Rev. D 97 (2018) 032005 [arXiv:1709.07703] [INSPIRE].
- [8]CMS collaboration, Measurements of the pp → ZZ production cross section and the Z →4ℓ branching fraction and constraints on anomalous triple gauge couplings at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 78 (2018) 165 [arXiv:1709.08601] [INSPIRE].
- [9]ATLAS collaboration, Search for heavy ZZ resonances in the ℓ + ℓ − ℓ + ℓ − and \( {\ell}^{+}{\ell}^{-}\nu \overline{\nu} \) final states using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2017-058 (2017) [INSPIRE].
- [10]J. Ohnemus and J.F. Owens, An Order-α s calculation of hadronic ZZ production, Phys. Rev. D 43 (1991) 3626 [INSPIRE].ADSGoogle Scholar
- [11]B. Mele, P. Nason and G. Ridolfi, QCD radiative corrections to Z boson pair production in hadronic collisions, Nucl. Phys. B 357 (1991) 409 [INSPIRE].ADSCrossRefGoogle Scholar
- [12]J. Ohnemus, Hadronic ZZ, W − W + and W ± Z production with QCD corrections and leptonic decays, Phys. Rev. D 50 (1994) 1931 [hep-ph/9403331] [INSPIRE].
- [13]J.M. Campbell and R.K. Ellis, An Update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].
- [14]L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at O(α s): Lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].
- [15]D.A. Dicus, C. Kao and W.W. Repko, Gluon Production of Gauge Bosons, Phys. Rev. D 36 (1987) 1570 [INSPIRE].ADSGoogle Scholar
- [16]E.W.N. Glover and J.J. van der Bij, Z-boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [INSPIRE].ADSCrossRefGoogle Scholar
- [17]T. Matsuura and J.J. van der Bij, Characteristics of leptonic signals for Z boson pairs at hadron colliders, Z. Phys. C 51 (1991) 259 [INSPIRE].Google Scholar
- [18]C. Zecher, T. Matsuura and J.J. van der Bij, Leptonic signals from off-shell Z boson pairs at hadron colliders, Z. Phys. C 64 (1994) 219 [hep-ph/9404295] [INSPIRE].
- [19]T. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to \( pp\to ZZ\to \ell \overline{\ell}{\ell}^{\prime }{\overline{\ell}}^{\prime } \), in proceedings of the 16th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2008), London, U.K., 7–11 April 2008, Science Wise Publishing, Berlin Germany (2008), p. 142 [arXiv:0807.0024] [INSPIRE].
- [20]J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].ADSCrossRefGoogle Scholar
- [21]N. Kauer, Interference effects for \( H\to WW/ZZ\to \ell {\overline{\nu}}_{\ell}\overline{\ell}{\nu}_{\ell } \) searches in gluon fusion at the LHC, JHEP 12 (2013) 082 [arXiv:1310.7011] [INSPIRE].ADSCrossRefGoogle Scholar
- [22]F. Cascioli, S. Höche, F. Krauss, P. Maierhöfer, S. Pozzorini and F. Siegert, Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0, 1 jet production, JHEP 01 (2014) 046 [arXiv:1309.0500] [INSPIRE].ADSCrossRefGoogle Scholar
- [23]J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC using full analytic results for gg → e − e + μ − μ +, JHEP 04 (2014) 060 [arXiv:1311.3589] [INSPIRE].ADSCrossRefGoogle Scholar
- [24]N. Kauer, C. O’Brien and E. Vryonidou, Interference effects for \( H\to WW\to \ell \nu q\overline{q}^{\prime } \) and \( H\to ZZ\to \ell \overline{\ell}q\overline{q} \) searches in gluon fusion at the LHC, JHEP 10 (2015) 074 [arXiv:1506.01694] [INSPIRE].ADSCrossRefGoogle Scholar
- [25]C.S. Li, H.T. Li, D.Y. Shao and J. Wang, Soft gluon resummation in the signal-background interference process of gg(→ h *) → ZZ, JHEP 08 (2015) 065 [arXiv:1504.02388] [INSPIRE].ADSCrossRefGoogle Scholar
- [26]T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \( q\overline{q}\to VV \), JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].ADSCrossRefGoogle Scholar
- [27]F. Caola, J.M. Henn, K. Melnikov and V.A. Smirnov, Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons, JHEP 09 (2014) 043 [arXiv:1404.5590] [INSPIRE].ADSCrossRefGoogle Scholar
- [28]T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for \( q{\overline{q}}^{\prime}\to {V}_1{V}_2\to\ 4 \) leptons, JHEP 09 (2015) 128 [arXiv:1503.04812] [INSPIRE].ADSCrossRefGoogle Scholar
- [29]A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for gg → V 1 V 2 → 4 leptons, JHEP 06 (2015) 197 [arXiv:1503.08835] [INSPIRE].ADSCrossRefGoogle Scholar
- [30]F. Caola, J.M. Henn, K. Melnikov, A.V. Smirnov and V.A. Smirnov, Two-loop helicity amplitudes for the production of two off-shell electroweak bosons in gluon fusion, JHEP 06 (2015) 129 [arXiv:1503.08759] [INSPIRE].ADSCrossRefGoogle Scholar
- [31]F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311 [arXiv:1405.2219] [INSPIRE].ADSCrossRefGoogle Scholar
- [32]M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD, Phys. Lett. B 750 (2015) 407 [arXiv:1507.06257] [INSPIRE].ADSCrossRefGoogle Scholar
- [33]F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to ZZ production in gluon fusion at the LHC, Phys. Rev. D 92 (2015) 094028 [arXiv:1509.06734] [INSPIRE].ADSGoogle Scholar
- [34]F. Caola, M. Dowling, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC, JHEP 07 (2016) 087 [arXiv:1605.04610] [INSPIRE].ADSCrossRefGoogle Scholar
- [35]S. Alioli, F. Caola, G. Luisoni and R. Röntsch, ZZ production in gluon fusion at NLO matched to parton-shower, Phys. Rev. D 95 (2017) 034042 [arXiv:1609.09719] [INSPIRE].ADSGoogle Scholar
- [36]E. Accomando, A. Denner and A. Kaiser, Logarithmic electroweak corrections to gauge-boson pair production at the LHC, Nucl. Phys. B 706 (2005) 325 [hep-ph/0409247] [INSPIRE].
- [37]A. Bierweiler, T. Kasprzik and J.H. Kühn, Vector-boson pair production at the LHC to \( \mathcal{O}\left({\alpha}^3\right) \) accuracy, JHEP 12 (2013) 071 [arXiv:1305.5402] [INSPIRE].ADSCrossRefGoogle Scholar
- [38]J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, Phys. Rev. D 88 (2013) 113005 [Erratum ibid. D 94 (2016) 099902] [arXiv:1307.4331] [INSPIRE].
- [39]S. Gieseke, T. Kasprzik and J.H. Kühn, Vector-boson pair production and electroweak corrections in HERWIG++, Eur. Phys. J. C 74 (2014) 2988 [arXiv:1401.3964] [INSPIRE].ADSCrossRefGoogle Scholar
- [40]B. Biedermann, Full NLO electroweak corrections to Z-boson pair production at the Large Hadron Collider, PoS(DIS2017)168 [arXiv:1707.01029] [INSPIRE].
- [41]B. Biedermann, A. Denner, S. Dittmaier, L. Hofer and B. Jäger, Electroweak corrections to pp → μ + μ − e + e − + X at the LHC: a Higgs background study, Phys. Rev. Lett. 116 (2016) 161803 [arXiv:1601.07787] [INSPIRE].ADSCrossRefGoogle Scholar
- [42]B. Biedermann, A. Denner, S. Dittmaier, L. Hofer and B. Jäger, Next-to-leading-order electroweak corrections to the production of four charged leptons at the LHC, JHEP 01 (2017) 033 [arXiv:1611.05338] [INSPIRE].ADSCrossRefGoogle Scholar
- [43]S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
- [44]R. Boughezal, C. Focke, X. Liu and F. Petriello, W-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].ADSCrossRefGoogle Scholar
- [45]J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N-jettiness Subtractions for NNLO QCD Calculations, JHEP 09 (2015) 058 [arXiv:1505.04794] [INSPIRE].CrossRefGoogle Scholar
- [46]K. Melnikov and M. Dowling, Production of two Z-bosons in gluon fusion in the heavy top quark approximation, Phys. Lett. B 744 (2015) 43 [arXiv:1503.01274] [INSPIRE].ADSCrossRefGoogle Scholar
- [47]J.M. Campbell, R.K. Ellis, M. Czakon and S. Kirchner, Two loop correction to interference in gg → ZZ, JHEP 08 (2016) 011 [arXiv:1605.01380] [INSPIRE].ADSCrossRefGoogle Scholar
- [48]J. Gao, C.S. Li and H.X. Zhu, Top Quark Decay at Next-to-Next-to Leading Order in QCD, Phys. Rev. Lett. 110 (2013) 042001 [arXiv:1210.2808] [INSPIRE].ADSCrossRefGoogle Scholar
- [49]R. Boughezal, C. Focke, W. Giele, X. Liu and F. Petriello, Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett. B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].ADSCrossRefGoogle Scholar
- [50]I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: From PDFs to Initial State Jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].ADSGoogle Scholar
- [51]I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].ADSCrossRefGoogle Scholar
- [52]I. Moult, L. Rothen, I.W. Stewart, F.J. Tackmann and H.X. Zhu, Subleading Power Corrections for N-Jettiness Subtractions, Phys. Rev. D 95 (2017) 074023 [arXiv:1612.00450] [INSPIRE].ADSGoogle Scholar
- [53]W.T. Giele, E.W.N. Glover and D.A. Kosower, Higher order corrections to jet cross-sections in hadron colliders, Nucl. Phys. B 403 (1993) 633 [hep-ph/9302225] [INSPIRE].
- [54]S. Alioli et al., Combining Higher-Order Resummation with Multiple NLO Calculations and Parton Showers in GENEVA, JHEP 09 (2013) 120 [arXiv:1211.7049] [INSPIRE].ADSCrossRefGoogle Scholar
- [55]S. Alioli, C.W. Bauer, C. Berggren, F.J. Tackmann, J.R. Walsh and S. Zuberi, Matching Fully Differential NNLO Calculations and Parton Showers, JHEP 06 (2014) 089 [arXiv:1311.0286] [INSPIRE].ADSCrossRefGoogle Scholar
- [56]C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → X s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
- [57]J.R. Gaunt, M. Stahlhofen and F.J. Tackmann, The Quark Beam Function at Two Loops, JHEP 04 (2014) 113 [arXiv:1401.5478] [INSPIRE].ADSCrossRefGoogle Scholar
- [58]R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, The two-loop hemisphere soft function, Phys. Rev. D 84 (2011) 045022 [arXiv:1105.3676] [INSPIRE].ADSGoogle Scholar
- [59]P.F. Monni, T. Gehrmann and G. Luisoni, Two-Loop Soft Corrections and Resummation of the Thrust Distribution in the Dijet Region, JHEP 08 (2011) 010 [arXiv:1105.4560] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [60]T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].
- [61]T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [Erratum JHEP 11 (2013) 024] [arXiv:0903.1126] [INSPIRE].
- [62]J.M. Campbell, R.K. Ellis, Y. Li and C. Williams, Predictions for diphoton production at the LHC through NNLO in QCD, JHEP 07 (2016) 148 [arXiv:1603.02663] [INSPIRE].ADSCrossRefGoogle Scholar
- [63]S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Universality of transverse-momentum resummation and hard factors at the NNLO, Nucl. Phys. B 881 (2014) 414 [arXiv:1311.1654] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [64]S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
- [65]J. Baglio et al., VBFNLO: A Parton Level Monte Carlo for Processes with Electroweak Bosons — Manual for Version 2.7.0, arXiv:1107.4038 [INSPIRE].
- [66]F. Campanario, M. Kerner, L.D. Ninh and D. Zeppenfeld, Next-to-leading order QCD corrections to ZZ production in association with two jets, JHEP 07 (2014) 148 [arXiv:1405.3972] [INSPIRE].ADSCrossRefGoogle Scholar
- [67]J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
- [68]G. Cullen et al., Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].ADSCrossRefGoogle Scholar
- [69]G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
- [70]F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
- [71]P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [72]J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
- [73]G. Cullen, M. Koch-Janusz and T. Reiter, Spinney: A Form Library for Helicity Spinors, Comput. Phys. Commun. 182 (2011) 2368 [arXiv:1008.0803] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [74]P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [75]T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Golem95: A Numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [76]G. Cullen et al., Golem95C: A library for one-loop integrals with complex masses, Comput. Phys. Commun. 182 (2011) 2276 [arXiv:1101.5595] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [77]J.P. Guillet, G. Heinrich and J.F. von Soden-Fraunhofen, Tools for NLO automation: extension of the golem95C integral library, Comput. Phys. Commun. 185 (2014) 1828 [arXiv:1312.3887] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [78]H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Multi-leg One-loop Massive Amplitudes from Integrand Reduction via Laurent Expansion, JHEP 03 (2014) 115 [arXiv:1312.6678] [INSPIRE].ADSCrossRefGoogle Scholar
- [79]T. Peraro, Ninja: Automated Integrand Reduction via Laurent Expansion for One-Loop Amplitudes, Comput. Phys. Commun. 185 (2014) 2771 [arXiv:1403.1229] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [80]A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [81]A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].
- [82]E.W.N. Glover and J. Pires, Antenna subtraction for gluon scattering at NNLO, JHEP 06 (2010) 096 [arXiv:1003.2824] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [83]J. Currie, E.W.N. Glover and S. Wells, Infrared Structure at NNLO Using Antenna Subtraction, JHEP 04 (2013) 066 [arXiv:1301.4693] [INSPIRE].ADSCrossRefGoogle Scholar
- [84]A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].
- [85]A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [86]A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP 10 (2012) 047 [arXiv:1207.5779] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [87]A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, The NNLO QCD corrections to Z boson production at large transverse momentum, JHEP 07 (2016) 133 [arXiv:1605.04295] [INSPIRE].ADSCrossRefGoogle Scholar
- [88]X. Chen, J. Cruz-Martinez, T. Gehrmann, E.W.N. Glover and M. Jaquier, NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP 10 (2016) 066 [arXiv:1607.08817] [INSPIRE].ADSCrossRefGoogle Scholar
- [89]J. Currie, E.W.N. Glover and J. Pires, Next-to-Next-to Leading Order QCD Predictions for Single Jet Inclusive Production at the LHC, Phys. Rev. Lett. 118 (2017) 072002 [arXiv:1611.01460] [INSPIRE].ADSCrossRefGoogle Scholar
- [90]J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and J. Pires, Precise predictions for dijet production at the LHC, Phys. Rev. Lett. 119 (2017) 152001 [arXiv:1705.10271] [INSPIRE].ADSCrossRefGoogle Scholar
- [91]M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].ADSCrossRefGoogle Scholar
- [92]R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, JHEP 06 (2013) 072 [arXiv:1302.6216] [INSPIRE].ADSCrossRefGoogle Scholar
- [93]M. Czakon and D. Heymes, Four-dimensional formulation of the sector-improved residue subtraction scheme, Nucl. Phys. B 890 (2014) 152 [arXiv:1408.2500] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
- [94]F. Caola, K. Melnikov and R. Röntsch, Nested soft-collinear subtractions in NNLO QCD computations, Eur. Phys. J. C 77 (2017) 248 [arXiv:1702.01352] [INSPIRE].ADSCrossRefGoogle Scholar
- [95]V. Del Duca, C. Duhr, G. Somogyi, F. Tramontano and Z. Trócsányi, Higgs boson decay into b-quarks at NNLO accuracy, JHEP 04 (2015) 036 [arXiv:1501.07226] [INSPIRE].ADSCrossRefGoogle Scholar
- [96]G. Somogyi, A. Kardos, Z. Szőr and Z. Trócsányi, Higher order corrections in the CoLoRFulNNLO framework, Acta Phys. Polon. B 48 (2017) 1195 [arXiv:1706.01688] [INSPIRE].ADSCrossRefGoogle Scholar
- [97]R. Bonciani, S. Catani, M. Grazzini, H. Sargsyan and A. Torre, The q T subtraction method for top quark production at hadron colliders, Eur. Phys. J. C 75 (2015) 581 [arXiv:1508.03585] [INSPIRE].ADSCrossRefGoogle Scholar
- [98]R. Boughezal et al., Z-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 116 (2016) 152001 [arXiv:1512.01291] [INSPIRE].ADSCrossRefGoogle Scholar
- [99]J.M. Campbell, R.K. Ellis and C. Williams, Associated production of a Higgs boson at NNLO, JHEP 06 (2016) 179 [arXiv:1601.00658] [INSPIRE].ADSCrossRefGoogle Scholar
- [100]R. Boughezal, X. Liu and F. Petriello, W-boson plus jet differential distributions at NNLO in QCD, Phys. Rev. D 94 (2016) 113009 [arXiv:1602.06965] [INSPIRE].ADSGoogle Scholar
- [101]R. Boughezal, X. Liu and F. Petriello, Phenomenology of the Z-boson plus jet process at NNLO, Phys. Rev. D 94 (2016) 074015 [arXiv:1602.08140] [INSPIRE].ADSGoogle Scholar
- [102]R. Boughezal et al., Color singlet production at NNLO in MCFM, Eur. Phys. J. C 77 (2017) 7 [arXiv:1605.08011] [INSPIRE].ADSCrossRefGoogle Scholar
- [103]J.M. Campbell, R.K. Ellis and C. Williams, Direct Photon Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett. 118 (2017) 222001 [arXiv:1612.04333] [INSPIRE].ADSCrossRefGoogle Scholar
- [104]J.M. Campbell, R.K. Ellis and C. Williams, Driving missing data at the LHC: NNLO predictions for the ratio of γ + j and Z + j, Phys. Rev. D 96 (2017) 014037 [arXiv:1703.10109] [INSPIRE].ADSGoogle Scholar
- [105]A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Update of parton distributions at NNLO, Phys. Lett. B 652 (2007) 292 [arXiv:0706.0459] [INSPIRE].ADSCrossRefGoogle Scholar
- [106]NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
- [107]A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
- [108]R. Boughezal, X. Liu and F. Petriello, Power Corrections in the N-jettiness Subtraction Scheme, JHEP 03 (2017) 160 [arXiv:1612.02911] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [109]I. Moult, L. Rothen, I.W. Stewart, F.J. Tackmann and H.X. Zhu, N-jettiness subtractions for gg → H at subleading power, Phys. Rev. D 97 (2018) 014013 [arXiv:1710.03227] [INSPIRE].ADSGoogle Scholar
Copyright information
© The Author(s) 2018