Advertisement

Exact renormalization group in Batalin-Vilkovisky theory

  • Roberto Zucchini
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper, inspired by the Costello’s seminal work [11], we present a general formulation of exact renormalization group (RG) within the Batalin-Vilkovisky (BV) quantization scheme. In the spirit of effective field theory, the BV bracket and Laplacian structure as well as the BV effective action (EA) depend on an effective energy scale. The BV EA at a certain scale satisfies the BV quantum master equation at that scale. The RG flow of the EA is implemented by BV canonical maps intertwining the BV structures at different scales. Infinitesimally, this generates the BV exact renormalization group equation (RGE). We show that BV RG theory can be extended by augmenting the scale parameter space R to its shifted tangent bundle T [1]ℝ. The extra odd direction in scale space allows for a BV RG supersymmetry that constrains the structure of the BV RGE bringing it to Polchinski’s form [6]. We investigate the implications of BV RG supersymmetry in perturbation theory. Finally, we illustrate our findings by constructing free models of BV RG flow and EA exhibiting RG supersymmetry in the degree −1 symplectic framework and studying the perturbation theory thereof. We find in particular that the odd partner of effective action describes perturbatively the deviation of the interacting RG flow from its free counterpart.

Keywords

BRST Quantization Differential and Algebraic Geometry Renormalization Group Topological Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I.A. Batalin and G.A. Vilkovisky, Gauge Algebra and Quantization, Phys. Lett. B 102 (1981) 27 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    I.A. Batalin and G.A. Vilkovisky, Quantization of Gauge Theories with Linearly Dependent Generators, Phys. Rev. D 28 (1983) 2567 [Erratum ibid. D 30 (1984) 508] [INSPIRE].
  3. [3]
    J. Gomis, J. Paris and S. Samuel, Antibracket, antifields and gauge theory quantization, Phys. Rept. 259 (1995) 1 [hep-th/9412228] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    L.P. Kadanoff, Scaling laws for Ising models near T c, Physics 2 (1966) 263.CrossRefGoogle Scholar
  5. [5]
    K.G. Wilson, The Renormalization Group: Critical Phenomena and the Kondo Problem, Rev. Mod. Phys. 47 (1975) 773 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    J. Polchinski, Renormalization and Effective Lagrangians, Nucl. Phys. B 231 (1984) 269 [INSPIRE].
  7. [7]
    C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [arXiv:1710.05815] [INSPIRE].
  8. [8]
    O.J. Rosten, Fundamentals of the Exact Renormalization Group, Phys. Rept. 511 (2012) 177 [arXiv:1003.1366] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    Y. Igarashi, K. Itoh and H. So, BRS symmetry, the quantum master equation and the Wilsonian renormalization group, Prog. Theor. Phys. 106 (2001) 149 [hep-th/0101101] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Y. Igarashi, K. Itoh and H. So, Regularized quantum master equation in the Wilsonian renormalization group, JHEP 10 (2001) 032 [hep-th/0109202] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    K.J. Costello, Renormalisation and the Batalin-Vilkovisky formalism, arXiv:0706.1533 [INSPIRE].
  12. [12]
    K.J. Costello, Renormalisation and Effective Field Theory, Mathematical Surveys and Monographs 170 (2011), http://bookstore.ams.org/surv-170.
  13. [13]
    K.J. Costello and O. Gwilliam Factorization Algebras in Quantum Field Theory, vol. I and II, available at O. Gwilliam’s webpage http://people.mpim-bonn.mpg.de/gwilliam/.
  14. [14]
    O. Gwilliam Factorization algebras and free field theories, Ph.D Thesis, Northwestern University, available at O. Gwilliam’s webpage http://people.mpim-bonn.mpg.de/gwilliam/.
  15. [15]
    P. Mnev, Discrete BF theory, arXiv:0809.1160 [INSPIRE].
  16. [16]
    S. Li, Vertex algebras and quantum master equation, arXiv:1612.01292 [INSPIRE].
  17. [17]
    C. Elliott, B. Williams and P. Yoo, Asymptotic Freedom in the BV Formalism, J. Geom. Phys. 123 (2018) 246 [arXiv:1702.05973] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    S. Li, Effective Batalin-Vilkovisky quantization and geometric applications, arXiv:1709.00669 [INSPIRE].
  19. [19]
    B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].
  20. [20]
    K.J. Costello and S. Li, Quantum BCOV theory on Calabi-Yau manifolds and the higher genus B-model, arXiv:1201.4501 [INSPIRE].
  21. [21]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [INSPIRE].
  22. [22]
    O. Gwilliam and B. Williams, The holomorphic bosonic string, arXiv:1711.05823 [INSPIRE].
  23. [23]
    R. Zucchini, Exact renormalization group and effective action: a Batalin-Vilkovisky algebraic formulation, arXiv:1711.07795 [INSPIRE].
  24. [24]
    J.I. Latorre and T.R. Morris, Exact scheme independence, JHEP 11 (2000) 004 [hep-th/0008123] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    J.I. Latorre and T.R. Morris, Scheme Independence as an Inherent Redundancy in Quantum Field Theory, Int. J. Mod. Phys. A 16 (2001) 2071 [hep-th/0102037] [INSPIRE].
  26. [26]
    J.-I. Sumi, W. Souma, K.-I. Aoki, H. Terao and K. Morikawa, Scheme dependence of the Wilsonian effective action and sharp cutoff limit of the flow equation, hep-th/0002231 [INSPIRE].
  27. [27]
    A.S. Schwarz, Geometry of Batalin-Vilkovisky quantization, Commun. Math. Phys. 155 (1993) 249 [hep-th/9205088] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    A.S. Cattaneo and F. Schaetz, Introduction to supergeometry, Rev. Math. Phys. 23 (2011) 669 [arXiv:1011.3401] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    P. Mnev, Lectures on Batalin-Vilkovisky formalism and its applications in topological quantum field theory, arXiv:1707.08096 [INSPIRE].
  30. [30]
    T. Covolo, V. Ovsienko and N. Poncin, Higher Trace and Berezinian of Matrices over a Clifford Algebra, J. Geom. Phys. 62 (2012) 2294 [arXiv:1109.5877] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    D.H. Friedan, Nonlinear models in 2 + ϵ dimensions, Ph.D. Thesis, Berkeley, LBNL Paper LBL-11517 (1980).
  32. [32]
    D. Friedan, Nonlinear Models in 2 + ϵ Dimensions, Phys. Rev. Lett. 45 (1980) 1057 [INSPIRE].
  33. [33]
    D.H. Friedan, Nonlinear Models in 2 + ϵ Dimensions, Annals Phys. 163 (1985) 318 [INSPIRE].
  34. [34]
    R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982) 255.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    M. Carfora, Renormalization Group and the Ricci Flow, in Riemann International School of Mathematics: Advances in Number Theory and Geometry Verbania, Italy, April 19-24, 2009, arXiv:1001.3595 [INSPIRE].
  36. [36]
    R. Grady and B. Williams, Homotopy RG fow and the non-linear σ model, arXiv:1710.05973.
  37. [37]
    W.P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Am. Math. Soc. 6 (1982) 357 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    W.P. Thurston, Three-dimensiional geometry and topology, vol. I, S. Levy ed., Princeton Math. Series 35, Princeton University Press (1997), http://press.princeton.edu/titles/6086.html.
  39. [39]
    G. Perelman, The entropy formula for the Ricci flow and its geometric applications, math/0211159 [INSPIRE].
  40. [40]
    G. Perelman, Ricci flow with surgery on three-manifolds, math/0303109 [INSPIRE].
  41. [41]
    G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, math/0307245 [INSPIRE].
  42. [42]
    M. Alexandrov, A. Schwarz, O. Zaboronsky and M. Kontsevich, The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys. A 12 (1997) 1405 [hep-th/9502010] [INSPIRE].
  43. [43]
    N. Ikeda, Lectures on AKSZ σ-models for Physicists, in Proceedings, Workshop on Strings, Membranes and Topological Field Theory, pp. 79-169, WSPC, WSPC, 2017, arXiv:1204.3714 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica ed Astronomia, Università di Bologna, I.N.F.N., sezione di BolognaBolognaItaly

Personalised recommendations