5-brane webs for 5d \( \mathcal{N} \) = 1 G2 gauge theories

  • Hirotaka Hayashi
  • Sung-Soo Kim
  • Kimyeong Lee
  • Futoshi Yagi
Open Access
Regular Article - Theoretical Physics


We propose 5-brane webs for 5d \( \mathcal{N} \) = 1 G2 gauge theories. From a Higgsing of the SO(7) gauge theory with a hypermultiplet in the spinor representation, we construct two types of 5-brane web configurations for the pure G2 gauge theory using an O5-plane or an \( \tilde{\mathrm{O}5} \)-plane. Adding flavors to the 5-brane web for the pure G2 gauge theory is also discussed. Based on the obtained 5-brane webs, we compute the partition functions for the 5d G2 gauge theories using the recently suggested topological vertex formulation with an O5-plane, and we find agreement with known results.


Brane Dynamics in Gauge Theories Conformal Field Models in String Theory Field Theories in Higher Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and type-I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    O. Aharony, A. Hanany and B. Kol, Webs of (p,q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    I. Brunner and A. Karch, Branes and six-dimensional fixed points, Phys. Lett. B 409 (1997) 109 [hep-th/9705022] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP 12 (2015) 163 [arXiv:1507.03860] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, More on 5d descriptions of 6d SCFTs, JHEP 10 (2016) 126 [arXiv:1512.08239] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    G. Zafrir, Brane webs and O5-planes, JHEP 03 (2016) 109 [arXiv:1512.08114] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 6d SCFTs, 5d dualities and tao web diagrams, arXiv:1509.03300 [INSPIRE].
  12. [12]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Equivalence of several descriptions for 6d SCFT, JHEP 01 (2017) 093 [arXiv:1607.07786] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Y. Yun, Testing 5d-6d dualities with fractional D-branes, JHEP 12 (2016) 016 [arXiv:1607.07615] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Gaiotto and H.-C. Kim, Duality walls and defects in 5d \( \mathcal{N} \) = 1 theories, JHEP 01 (2017) 019 [arXiv:1506.03871] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    G. Zafrir, Brane webs in the presence of an O5 -plane and 4d class S theories of type D, JHEP 07 (2016) 035 [arXiv:1602.00130] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Discrete theta angle from an O5-plane, arXiv:1707.07181 [INSPIRE].
  17. [17]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    H. Awata and H. Kanno, Refined BPS state counting from Nekrasov’s formula and Macdonald functions, Int. J. Mod. Phys. A 24 (2009) 2253 [arXiv:0805.0191] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    N.C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys. 2 (1998) 91 [hep-th/9711013] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    H. Hayashi, H.-C. Kim and T. Nishinaka, Topological strings and 5d T N partition functions, JHEP 06 (2014) 014 [arXiv:1310.3854] [INSPIRE].
  23. [23]
    H. Hayashi and G. Zoccarato, Exact partition functions of Higgsed 5d T N theories, JHEP 01 (2015) 093 [arXiv:1409.0571] [INSPIRE].
  24. [24]
    H. Hayashi and G. Zoccarato, Topological vertex for Higgsed 5d T N theories, JHEP 09 (2015) 023 [arXiv:1505.00260] [INSPIRE].
  25. [25]
    S.-S. Kim, M. Taki and F. Yagi, Tao probing the end of the world, PTEP 2015 (2015) 083B02 [arXiv:1504.03672] [INSPIRE].
  26. [26]
    H. Hayashi and G. Zoccarato, Partition functions of web diagrams with an O7 -plane, JHEP 03 (2017) 112 [arXiv:1609.07381] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S.-S. Kim and F. Yagi, Topological vertex formalism with O5-plane, Phys. Rev. D 97 (2018) 026011 [arXiv:1709.01928] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert series of the one instanton moduli space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    C.A. Keller, N. Mekareeya, J. Song and Y. Tachikawa, The ABCDEFG of instantons and W-algebras, JHEP 03 (2012) 045 [arXiv:1111.5624] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    A. Hanany, N. Mekareeya and S.S. Razamat, Hilbert series for moduli spaces of two instantons, JHEP 01 (2013) 070 [arXiv:1205.4741] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    C.A. Keller and J. Song, Counting exceptional instantons, JHEP 07 (2012) 085 [arXiv:1205.4722] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb branch and the moduli space of instantons, JHEP 12 (2014) 103 [arXiv:1408.6835] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    H.-C. Kim, J. Kim, S. Kim, K.-H. Lee and J. Park, 6d strings and exceptional instantons, arXiv:1801.03579 [INSPIRE].
  34. [34]
    N.J. Evans, C.V. Johnson and A.D. Shapere, Orientifolds, branes and duality of 4D gauge theories, Nucl. Phys. B 505 (1997) 251 [hep-th/9703210] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    A. Giveon and D. Kutasov, Brane dynamics and gauge theory, Rev. Mod. Phys. 71 (1999) 983 [hep-th/9802067] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    B. Feng and A. Hanany, Mirror symmetry by O3 planes, JHEP 11 (2000) 033 [hep-th/0004092] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    G. Bertoldi, B. Feng and A. Hanany, The splitting of branes on orientifold planes, JHEP 04 (2002) 015 [hep-th/0202090] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    G. Zafrir, Instanton operators and symmetry enhancement in 5d supersymmetric USp, SO and exceptional gauge theories, JHEP 07 (2015) 087 [arXiv:1503.08136] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards classification of 5d SCFTs: single gauge node, arXiv:1705.05836 [INSPIRE].
  41. [41]
    A. Iqbal and A.-K. Kashani-Poor, The vertex on a strip, Adv. Theor. Math. Phys. 10 (2006) 317 [hep-th/0410174] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, Discrete θ and the 5d superconformal index, JHEP 01 (2014) 079 [arXiv:1310.2150] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    L. Bao, V. Mitev, E. Pomoni, M. Taki and F. Yagi, Non-lagrangian theories from brane junctions, JHEP 01 (2014) 175 [arXiv:1310.3841] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-brane webs, symmetry enhancement and duality in 5D supersymmetric gauge theory, JHEP 03 (2014) 112 [arXiv:1311.4199] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP 07 (2015) 063 [arXiv:1406.6793] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    H. Hayashi, S.S. Kim, K. Lee and F. Yagi, work in progress.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics, School of ScienceTokai UniversityHiratsuka-shiJapan
  2. 2.School of PhysicsUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
  4. 4.School of PhysicsKorea Institute for Advanced StudySeoulKorea
  5. 5.Department of PhysicsTechnion — Israel Institute of TechnologyHaifaIsrael

Personalised recommendations