Advertisement

On a new type of divergence for spiky Wilson loops and related entanglement entropies

  • Harald Dorn
Open Access
Regular Article - Theoretical Physics
  • 47 Downloads

Abstract

We study the divergences of Wilson loops for a contour with a cusp of zero opening angle, combined with a nonzero discontinuity of its curvature. The analysis is performed in lowest order, both for weak and strong coupling. Such a spike contributes a leading divergent term proportional to the inverse of the square root of the cutoff times the jump of the curvature. As nextleading term appears a logarithmic one in the supersymmetric case, but it is absent in QCD. The strong coupling result, obtained from minimal surfaces in AdS via holography, can be used also for applications to entanglement entropy in (2+1)-dimensional CFT’s.

Keywords

Wilson, ’t Hooft and Polyakov loops AdS-CFT Correspondence Renormalization Regularization and Renormalons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    V.S. Dotsenko and S.N. Vergeles, Renormalizability of Phase Factors in the Nonabelian Gauge Theory, Nucl. Phys. B 169 (1980) 527 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].
  6. [6]
    R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of Loop Functions for All Loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].ADSGoogle Scholar
  7. [7]
    D. Knauss and K. Scharnhorst, Two Loop Renormalization of Nonsmooth String Operators in Yang-Mills Theory, Annalen Phys. 41 (1984) 331 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, Three Loop Cusp Anomalous Dimension in QCD, Phys. Rev. Lett. 114 (2015) 062006 [arXiv:1409.0023] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    V. Forini, A.A. Tseytlin and E. Vescovi, Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in AdS 5 × S 5, JHEP 03 (2017) 003 [arXiv:1702.02164] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    B. Eden and M. Staudacher, Integrability and transcendentality, J. Stat. Mech. 0611 (2006) P11014 [hep-th/0603157] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  13. [13]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].Google Scholar
  14. [14]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP 06 (2011) 131 [arXiv:1105.5144] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    H. Dorn, Renormalization of Path Ordered Phase Factors and Related Hadron Operators in Gauge Field Theories, Fortsch. Phys. 34 (1986) 11 [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    A.M. Polyakov, String theory and quark confinement, Nucl. Phys. Proc. Suppl. 68 (1998) 1 [hep-th/9711002] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    G. Pastras, On the Holographic Entanglement Entropy for Non-smooth Entangling Curves in AdS 4, arXiv:1710.01948 [INSPIRE].
  21. [21]
    H. Dorn, Wilson loops at strong coupling for curved contours with cusps, J. Phys. A 49 (2016) 145402 [arXiv:1509.00222] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  22. [22]
    J.-L. Gervais and A. Neveu, The Slope of the Leading Regge Trajectory in Quantum Chromodynamics, Nucl. Phys. B 163 (1980) 189 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    I. Ya. Arefeva, Quantum Contour Field Equations, Phys. Lett. B 93 (1980) 347 [INSPIRE].
  24. [24]
    N.S. Craigie and H. Dorn, On the Renormalization and Short Distance Properties of Hadronic Operators in QCD, Nucl. Phys. B 185 (1981) 204 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Aoyama, The Renormalization of the String Operator in QCD, Nucl. Phys. B 194 (1982) 513 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Dekel, Dual conformal transformations of smooth holographic Wilson loops, JHEP 01 (2017) 085 [arXiv:1610.07179] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    H. Dorn, On the logarithmic divergent part of entanglement entropy, smooth versus singular regions, Phys. Lett. B 763 (2016) 134 [arXiv:1608.04900] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    R.C. Myers and A. Singh, Entanglement Entropy for Singular Surfaces, JHEP 09 (2012) 013 [arXiv:1206.5225] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    I.R. Klebanov, T. Nishioka, S.S. Pufu and B.R. Safdi, On Shape Dependence and RG Flow of Entanglement Entropy, JHEP 07 (2012) 001 [arXiv:1204.4160] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institut für Physik und IRIS AdlershofHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations