Spheres, charges, instantons, and bootstrap: A five-dimensional odyssey

  • Chi-Ming Chang
  • Martin Fluder
  • Ying-Hsuan Lin
  • Yifan Wang
Open Access
Regular Article - Theoretical Physics
  • 15 Downloads

Abstract

We combine supersymmetric localization and the conformal bootstrap to study five-dimensional superconformal field theories. To begin, we classify the admissible counter-terms and derive a general relation between the five-sphere partition function and the conformal and flavor central charges. Along the way, we discover a new superconformal anomaly in five dimensions. We then propose a precise triple factorization formula for the five-sphere partition function, that incorporates instantons and is consistent with flavor symmetry enhancement. We numerically evaluate the central charges for the rank-one Seiberg and Morrison-Seiberg theories, and find strong evidence for their saturation of bootstrap bounds, thereby determining the spectra of long multiplets in these theories. Lastly, our results provide new evidence for the F-theorem and possibly a C-theorem in five-dimensional superconformal theories.

Keywords

Anomalies in Field and String Theories Conformal Field Theory Solitons Monopoles and Instantons Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K.G. Wilson and M.E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28 (1972) 240 [INSPIRE].
  2. [2]
    W.E. Caswell, Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop Order, Phys. Rev. Lett. 33 (1974) 244 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Banks and A. Zaks, On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions, Nucl. Phys. B 196 (1982) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L. Fei, S. Giombi and I.R. Klebanov, Critical O(N) models in 6 − ϵ dimensions, Phys. Rev. D 90 (2014) 025018 [arXiv:1404.1094] [INSPIRE].ADSGoogle Scholar
  5. [5]
    P. Mati, Vanishing beta function curves from the functional renormalization group, Phys. Rev. D 91 (2015) 125038 [arXiv:1501.00211] [INSPIRE].ADSGoogle Scholar
  6. [6]
    P. Mati, Critical scaling in the large-N O(N) model in higher dimensions and its possible connection to quantum gravity, Phys. Rev. D 94 (2016) 065025 [arXiv:1601.00450] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards Classification of 5d SCFTs: Single Gauge Node, arXiv:1705.05836 [INSPIRE].
  11. [11]
    E. Witten, Phase transitions in M theory and F theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and type I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  13. [13]
    S.H. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl. Phys. B 497 (1997) 173 [hep-th/9609239] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    O. Aharony, A. Hanany and B. Kol, Webs of (p,q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N.C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys. 2 (1998) 91 [hep-th/9711013] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    D. Xie and S.-T. Yau, Three dimensional canonical singularity and five dimensional \( \mathcal{N}=1 \) SCFT, JHEP 06 (2017) 134 [arXiv:1704.00799] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    A. Iqbal, All genus topological string amplitudes and five-brane webs as Feynman diagrams, hep-th/0207114 [INSPIRE].
  19. [19]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    H. Awata and H. Kanno, Instanton counting, Macdonald functions and the moduli space of D-branes, JHEP 05 (2005) 039 [hep-th/0502061] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    M. Taki, Refined Topological Vertex and Instanton Counting, JHEP 03 (2008) 048 [arXiv:0710.1776] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    H. Awata and H. Kanno, Refined BPS state counting from Nekrasov’s formula and Macdonald functions, Int. J. Mod. Phys. A 24 (2009) 2253 [arXiv:0805.0191] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    H. Awata, B. Feigin and J. Shiraishi, Quantum Algebraic Approach to Refined Topological Vertex, JHEP 03 (2012) 041 [arXiv:1112.6074] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math. 244 (2006) 525 [hep-th/0306238] [INSPIRE].
  27. [27]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    J. Källén and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric Gauge Theories on the Five-Sphere, Nucl. Phys. B 865 (2012) 376 [arXiv:1203.0371] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    J. Källén, J. Qiu and M. Zabzine, The perturbative partition function of supersymmetric 5D Yang-Mills theory with matter on the five-sphere, JHEP 08 (2012) 157 [arXiv:1206.6008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, JHEP 05 (2013) 144 [arXiv:1206.6339] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    H.-C. Kim, S.-S. Kim and K. Lee, 5-dim Superconformal Index with Enhanced En Global Symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Terashima, Supersymmetric gauge theories on S 4 × S 1, Phys. Rev. D 89 (2014) 125001 [arXiv:1207.2163] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, JHEP 05 (2014) 032 [arXiv:1207.4359] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    Y. Imamura, Supersymmetric theories on squashed five-sphere, PTEP 2013 (2013) 013B04 [arXiv:1209.0561] [INSPIRE].
  37. [37]
    A. Iqbal and C. Vafa, BPS Degeneracies and Superconformal Index in Diverse Dimensions, Phys. Rev. D 90 (2014) 105031 [arXiv:1210.3605] [INSPIRE].ADSGoogle Scholar
  38. [38]
    G. Lockhart and C. Vafa, Superconformal Partition Functions and Non-perturbative Topological Strings, arXiv:1210.5909 [INSPIRE].
  39. [39]
    Y. Imamura, Perturbative partition function for squashed S 5, PTEP 2013 (2013) 073B01 [arXiv:1210.6308] [INSPIRE].
  40. [40]
    H.-C. Kim, J. Kim and S. Kim, Instantons on the 5-sphere and M5-branes, arXiv:1211.0144 [INSPIRE].
  41. [41]
    B. Assel, J. Estes and M. Yamazaki, Wilson Loops in 5d N = 1 SCFTs and AdS/CFT, Annales Henri Poincaré 15 (2014) 589 [arXiv:1212.1202] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  42. [42]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, Discrete θ and the 5d superconformal index, JHEP 01 (2014) 079 [arXiv:1310.2150] [INSPIRE].
  43. [43]
    L. Bao, V. Mitev, E. Pomoni, M. Taki and F. Yagi, Non-Lagrangian Theories from Brane Junctions, JHEP 01 (2014) 175 [arXiv:1310.3841] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    H. Hayashi, H.-C. Kim and T. Nishinaka, Topological strings and 5d T N partition functions, JHEP 06 (2014) 014 [arXiv:1310.3854] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Taki, Seiberg Duality, 5d SCFTs and Nekrasov Partition Functions, arXiv:1401.7200 [INSPIRE].
  46. [46]
    L.F. Alday, M. Fluder, P. Richmond and J. Sparks, Gravity Dual of Supersymmetric Gauge Theories on a Squashed Five-Sphere, Phys. Rev. Lett. 113 (2014) 141601 [arXiv:1404.1925] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  47. [47]
    L.F. Alday, M. Fluder, C.M. Gregory, P. Richmond and J. Sparks, Supersymmetric gauge theories on squashed five-spheres and their gravity duals, JHEP 09 (2014) 067 [arXiv:1405.7194] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP 07 (2015) 063 [arXiv:1406.6793] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    V. Mitev, E. Pomoni, M. Taki and F. Yagi, Fiber-Base Duality and Global Symmetry Enhancement, JHEP 04 (2015) 052 [arXiv:1411.2450] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    H. Hayashi and G. Zoccarato, Topological vertex for Higgsed 5d T N theories, JHEP 09 (2015) 023 [arXiv:1505.00260] [INSPIRE].
  51. [51]
    O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP 12 (2015) 163 [arXiv:1507.03860] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    L.F. Alday, P. Benetti Genolini, M. Fluder, P. Richmond and J. Sparks, Supersymmetric gauge theories on five-manifolds, JHEP 08 (2015) 007 [arXiv:1503.09090] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    L.F. Alday, M. Fluder, C.M. Gregory, P. Richmond and J. Sparks, Supersymmetric solutions to Euclidean Romans supergravity, JHEP 02 (2016) 100 [arXiv:1505.04641] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    D. Gaiotto and H.-C. Kim, Duality walls and defects in 5d \( \mathcal{N}=1 \) theories, JHEP 01 (2017) 019 [arXiv:1506.03871] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  55. [55]
    G. Zafrir, Brane webs and O5-planes, JHEP 03 (2016) 109 [arXiv:1512.08114] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    C.-M. Chang, O. Ganor and J. Oh, An index for ray operators in 5d E n SCFTs, JHEP 02 (2017) 018 [arXiv:1608.06284] [INSPIRE].
  57. [57]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Holographic duals for five-dimensional superconformal quantum field theories, Phys. Rev. Lett. 118 (2017) 101601 [arXiv:1611.09411] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    E. D’Hoker, M. Gutperle and C.F. Uhlemann, Warped AdS 6 × S 2 in Type IIB supergravity II: Global solutions and five-brane webs, JHEP 05 (2017) 131 [arXiv:1703.08186] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  59. [59]
    H. Hayashi and K. Ohmori, 5d/6d DE instantons from trivalent gluing of web diagrams, JHEP 06 (2017) 078 [arXiv:1702.07263] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  60. [60]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, Instanton Operators in Five-Dimensional Gauge Theories, JHEP 03 (2015) 019 [arXiv:1412.2789] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    Y. Tachikawa, Instanton operators and symmetry enhancement in 5d supersymmetric gauge theories, PTEP 2015 (2015) 043B06 [arXiv:1501.01031] [INSPIRE].
  62. [62]
    G. Zafrir, Instanton operators and symmetry enhancement in 5d supersymmetric USp, SO and exceptional gauge theories, JHEP 07 (2015) 087 [arXiv:1503.08136] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    K. Yonekura, Instanton operators and symmetry enhancement in 5d supersymmetric quiver gauge theories, JHEP 07 (2015) 167 [arXiv:1505.04743] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Instanton Operators and the Higgs Branch at Infinite Coupling, JHEP 04 (2017) 042 [arXiv:1505.06302] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  65. [65]
    O. Bergman and D. Rodriguez-Gomez, A Note on Instanton Operators, Instanton Particles, and Supersymmetry, JHEP 05 (2016) 068 [arXiv:1601.00752] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    J.L. Cardy, Is There a c Theorem in Four-Dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    D.M. Capper and M.J. Duff, Trace anomalies in dimensional regularization, Nuovo Cim. A 23 (1974) 173 [INSPIRE].
  68. [68]
    A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett. 43 (1986) 730 [INSPIRE].ADSMathSciNetGoogle Scholar
  69. [69]
    Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  70. [70]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  71. [71]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  72. [72]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  73. [73]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  74. [74]
    I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-Theorem without Supersymmetry, JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].
  75. [75]
    H. Elvang, D.Z. Freedman, L.-Y. Hung, M. Kiermaier, R.C. Myers and S. Theisen, On renormalization group flows and the a-theorem in 6d, JHEP 10 (2012) 011 [arXiv:1205.3994] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    S. Giombi and I.R. Klebanov, Interpolating between a and F , JHEP 03 (2015) 117 [arXiv:1409.1937] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  77. [77]
    C. Cordova, T.T. Dumitrescu and X. Yin, Higher Derivative Terms, Toroidal Compactification, and Weyl Anomalies in Six-Dimensional (2,0) Theories, arXiv:1505.03850 [INSPIRE].
  78. [78]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Anomalies, renormalization group flows, and the a-theorem in six-dimensional (1, 0) theories, JHEP 10 (2016) 080 [arXiv:1506.03807] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    S.S. Pufu, The F-Theorem and F-Maximization, J. Phys. A 50 (2017) 443008 [arXiv:1608.02960] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  80. [80]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  81. [81]
    V.S. Rychkov and A. Vichi, Universal Constraints on Conformal Operator Dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].ADSMathSciNetGoogle Scholar
  82. [82]
    D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal Field Theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  83. [83]
    D. Poland, D. Simmons-Duffin and A. Vichi, Carving Out the Space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].
  84. [84]
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].ADSMATHGoogle Scholar
  85. [85]
    S. El-Showk and M.F. Paulos, Bootstrapping Conformal Field Theories with the Extremal Functional Method, Phys. Rev. Lett. 111 (2013) 241601 [arXiv:1211.2810] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    C. Beem, L. Rastelli and B.C. van Rees, The \( \mathcal{N}=4 \) Superconformal Bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].
  89. [89]
    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The \( \mathcal{N}=8 \) superconformal bootstrap in three dimensions, JHEP 09 (2014) 143 [arXiv:1406.4814] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping Mixed Correlators in the 3D Ising Model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    F. Caracciolo, A. Castedo Echeverri, B. von Harling and M. Serone, Bounds on OPE Coefficients in 4D Conformal Field Theories, JHEP 10 (2014) 020 [arXiv:1406.7845] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  92. [92]
    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, Exact Correlators of BPS Operators from the 3d Superconformal Bootstrap, JHEP 03 (2015) 130 [arXiv:1412.0334] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  93. [93]
    C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, The \( \mathcal{N}=2 \) superconformal bootstrap, JHEP 03 (2016) 183 [arXiv:1412.7541] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    D. Simmons-Duffin, A Semidefinite Program Solver for the Conformal Bootstrap, JHEP 06 (2015) 174 [arXiv:1502.02033] [INSPIRE].
  95. [95]
    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) Archipelago, JHEP 11 (2015) 106 [arXiv:1504.07997] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  96. [96]
    S.M. Chester, S. Giombi, L.V. Iliesiu, I.R. Klebanov, S.S. Pufu and R. Yacoby, Accidental Symmetries and the Conformal Bootstrap, JHEP 01 (2016) 110 [arXiv:1507.04424] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  97. [97]
    L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Bootstrapping 3D Fermions, JHEP 03 (2016) 120 [arXiv:1508.00012] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    C.-M. Chang and Y.-H. Lin, Bootstrapping 2D CFTs in the Semiclassical Limit, JHEP 08 (2016) 056 [arXiv:1510.02464] [INSPIRE].
  99. [99]
    M. Lemos and P. Liendo, Bootstrapping \( \mathcal{N}=2 \) chiral correlators, JHEP 01 (2016) 025 [arXiv:1510.03866] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  100. [100]
    H. Kim, P. Kravchuk and H. Ooguri, Reflections on Conformal Spectra, JHEP 04 (2016) 184 [arXiv:1510.08772] [INSPIRE].ADSGoogle Scholar
  101. [101]
    Y.-H. Lin, S.-H. Shao, D. Simmons-Duffin, Y. Wang and X. Yin, \( \mathcal{N}=4 \) superconformal bootstrap of the K3 CFT, JHEP 05 (2017) 126 [arXiv:1511.04065] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  102. [102]
    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision Islands in the Ising and O(N) Models, JHEP 08 (2016) 036 [arXiv:1603.04436] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  103. [103]
    C.-M. Chang and Y.-H. Lin, Bootstrap, universality and horizons, JHEP 10 (2016) 068 [arXiv:1604.01774] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    S. Collier, Y.-H. Lin and X. Yin, Modular Bootstrap Revisited, arXiv:1608.06241 [INSPIRE].
  105. [105]
    Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, (2, 2) superconformal bootstrap in two dimensions, JHEP 05 (2017) 112 [arXiv:1610.05371] [INSPIRE].
  106. [106]
    M. Lemos, P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping \( \mathcal{N}=3 \) superconformal theories, JHEP 04 (2017) 032 [arXiv:1612.01536] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  107. [107]
    P. Kravchuk and D. Simmons-Duffin, Counting Conformal Correlators, JHEP 02 (2018) 096 [arXiv:1612.08987] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    D. Li, D. Meltzer and A. Stergiou, Bootstrapping mixed correlators in 4D \( \mathcal{N}=1 \) SCFTs, JHEP 07 (2017) 029 [arXiv:1702.00404] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  109. [109]
    S. Collier, P. Kravchuk, Y.-H. Lin and X. Yin, Bootstrapping the Spectral Function: On the Uniqueness of Liouville and the Universality of BTZ, arXiv:1702.00423 [INSPIRE].
  110. [110]
    W. Li, Inverse Bootstrapping Conformal Field Theories, JHEP 01 (2018) 077 [arXiv:1706.04054] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    G.F. Cuomo, D. Karateev and P. Kravchuk, General Bootstrap Equations in 4D CFTs, JHEP 01 (2018) 130 [arXiv:1705.05401] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    D. Karateev, P. Kravchuk and D. Simmons-Duffin, Weight Shifting Operators and Conformal Blocks, JHEP 02 (2018) 081 [arXiv:1706.07813] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    A. Dymarsky, F. Kos, P. Kravchuk, D. Poland and D. Simmons-Duffin, The 3d Stress-Tensor Bootstrap, JHEP 02 (2018) 164 [arXiv:1708.05718] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    P. Kravchuk, Casimir recursion relations for general conformal blocks, JHEP 02 (2018) 011 [arXiv:1709.05347] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    Y. Nakayama and T. Ohtsuki, Five dimensional O(N)-symmetric CFTs from conformal bootstrap, Phys. Lett. B 734 (2014) 193 [arXiv:1404.5201] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    J.-B. Bae and S.-J. Rey, Conformal Bootstrap Approach to O(N) Fixed Points in Five Dimensions, arXiv:1412.6549 [INSPIRE].
  117. [117]
    S.M. Chester, S.S. Pufu and R. Yacoby, Bootstrapping O(N) vector models in 4 < d < 6, Phys. Rev. D 91 (2015) 086014 [arXiv:1412.7746] [INSPIRE].ADSMathSciNetGoogle Scholar
  118. [118]
    Z. Li and N. Su, Bootstrapping Mixed Correlators in the Five Dimensional Critical O(N) Models, JHEP 04 (2017) 098 [arXiv:1607.07077] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].ADSMathSciNetGoogle Scholar
  120. [120]
    C.-M. Chang and Y.-H. Lin, Carving Out the End of the World or (Superconformal Bootstrap in Six Dimensions), JHEP 08 (2017) 128 [arXiv:1705.05392] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  121. [121]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric Field Theories on Three-Manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  122. [122]
    N. Bobev, P. Bueno and Y. Vreys, Comments on Squashed-sphere Partition Functions, JHEP 07 (2017) 093 [arXiv:1705.00292] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  123. [123]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact Terms, Unitarity and F-Maximization in Three-Dimensional Superconformal Theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  124. [124]
    S. Giombi, I.R. Klebanov and G. Tarnopolsky, Conformal QED d , F-Theorem and the ϵ Expansion, J. Phys. A 49 (2016) 135403 [arXiv:1508.06354] [INSPIRE].ADSMATHGoogle Scholar
  125. [125]
    K. Diab, L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, On C J and C T in the Gross-Neveu and O(N) models, J. Phys. A 49 (2016) 405402 [arXiv:1601.07198] [INSPIRE].MATHGoogle Scholar
  126. [126]
    S. Giombi, G. Tarnopolsky and I.R. Klebanov, On C J and C T in Conformal QED, JHEP 08 (2016) 156 [arXiv:1602.01076] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  128. [128]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons Contact Terms in Three Dimensions, JHEP 09 (2012) 091 [arXiv:1206.5218] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  129. [129]
    E. Gerchkovitz, J. Gomis and Z. Komargodski, Sphere Partition Functions and the Zamolodchikov Metric, JHEP 11 (2014) 001 [arXiv:1405.7271] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  130. [130]
    E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren and A. Van Proeyen, N = 2 supergravity in five-dimensions revisited, Class. Quant. Grav. 21 (2004) 3015 [hep-th/0403045] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  131. [131]
    M. Ozkan and Y. Pang, All off-shell R 2 invariants in five dimensional \( \mathcal{N}=2 \) supergravity, JHEP 08 (2013) 042 [arXiv:1306.1540] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  132. [132]
    M. Zucker, Minimal off-shell supergravity in five-dimensions, Nucl. Phys. B 570 (2000) 267 [hep-th/9907082] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  133. [133]
    T. Kugo and K. Ohashi, Off-shell D = 5 supergravity coupled to matter Yang-Mills system, Prog. Theor. Phys. 105 (2001) 323 [hep-ph/0010288] [INSPIRE].
  134. [134]
    T. Kugo and K. Ohashi, Supergravity tensor calculus in 5-D from 6-D, Prog. Theor. Phys. 104 (2000) 835 [hep-ph/0006231] [INSPIRE].
  135. [135]
    E.A. Bergshoeff, J. Rosseel and E. Sezgin, Off-shell D = 5, N = 2 Riemann Squared Supergravity, Class. Quant. Grav. 28 (2011) 225016 [arXiv:1107.2825] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  136. [136]
    M. Ozkan and Y. Pang, Supersymmetric Completion of Gauss-Bonnet Combination in Five Dimensions, JHEP 03 (2013) 158 [Erratum ibid. 07 (2013) 152] [arXiv:1301.6622] [INSPIRE].
  137. [137]
    D. Butter, S.M. Kuzenko, J. Novak and G. Tartaglino-Mazzucchelli, Conformal supergravity in five dimensions: New approach and applications, JHEP 02 (2015) 111 [arXiv:1410.8682] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  138. [138]
    K. Hanaki, K. Ohashi and Y. Tachikawa, Supersymmetric Completion of an R 2 term in Five-dimensional Supergravity, Prog. Theor. Phys. 117 (2007) 533 [hep-th/0611329] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  139. [139]
    T. Fujita and K. Ohashi, Superconformal tensor calculus in five-dimensions, Prog. Theor. Phys. 106 (2001) 221 [hep-th/0104130] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  140. [140]
    E. Gerchkovitz, J. Gomis, N. Ishtiaque, A. Karasik, Z. Komargodski and S.S. Pufu, Correlation Functions of Coulomb Branch Operators, JHEP 01 (2017) 103 [arXiv:1602.05971] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  141. [141]
    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, work in progress.Google Scholar
  142. [142]
    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  143. [143]
    M. Buican, J. Hayling and C. Papageorgakis, Aspects of Superconformal Multiplets in D > 4, JHEP 11 (2016) 091 [arXiv:1606.00810] [INSPIRE].ADSCrossRefGoogle Scholar
  144. [144]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, arXiv:1612.00809 [INSPIRE].
  145. [145]
    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Romans Supergravity from Five-Dimensional Holograms, arXiv:1712.10313 [INSPIRE].
  146. [146]
    M. Movshev and A.S. Schwarz, On maximally supersymmetric Yang-Mills theories, Nucl. Phys. B 681 (2004) 324 [hep-th/0311132] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  147. [147]
    M. Movshev and A.S. Schwarz, Algebraic structure of Yang-Mills theory, Prog. Math. 244 (2006) 473 [hep-th/0404183] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  148. [148]
    M. Movshev, Deformation of maximally supersymmetric Yang-Mills theory in dimensions 10. An algebraic approach, hep-th/0601010 [INSPIRE].
  149. [149]
    M. Movshev and A. Schwarz, Supersymmetric Deformations of Maximally Supersymmetric Gauge Theories, JHEP 09 (2012) 136 [arXiv:0910.0620] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  150. [150]
    C.-M. Chang, Y.-H. Lin, Y. Wang and X. Yin, Deformations with Maximal Supersymmetries Part 1: On-shell Formulation, arXiv:1403.0545 [INSPIRE].
  151. [151]
    J. Qiu and M. Zabzine, Review of localization for 5d supersymmetric gauge theories, J. Phys. A 50 (2017) 443014 [arXiv:1608.02966] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  152. [152]
    S. Kim and K. Lee, Indices for 6 dimensional superconformal field theories, J. Phys. A 50 (2017) 443017 [arXiv:1608.02969] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  153. [153]
    T. Nishioka and K. Yonekura, On RG Flow of τ RR for Supersymmetric Field Theories in Three-Dimensions, JHEP 05 (2013) 165 [arXiv:1303.1522] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  154. [154]
    N. Bobev, E. Lauria and D. Mazac, Superconformal Blocks for SCFTs with Eight Supercharges, JHEP 07 (2017) 061 [arXiv:1705.08594] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  155. [155]
    P. Cvitanović, Group Theory: Birdtracks, Lies, and Exceptional Groups, Princeton University Press, Princeton, NJ U.S.A, (2008).Google Scholar
  156. [156]
    A. Joseph, The minimal orbit in a simple lie algebra and its associated maximal ideal, Annales Sci. Ecole Norm. Sup. 9 (1976) 1.MathSciNetMATHCrossRefGoogle Scholar
  157. [157]
    A. Pini, D. Rodriguez-Gomez and J. Schmude, Rigid Supersymmetry from Conformal Supergravity in Five Dimensions, JHEP 09 (2015) 118 [arXiv:1504.04340] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  158. [158]
    S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 783 [hep-th/9712074] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  159. [159]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for Superconformal Field Theories in 3,5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  160. [160]
    L.D. Faddeev, Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995) 249 [hep-th/9504111] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  161. [161]
    A. Narukawa, The modular properties and the integral representations of the multiple elliptic gamma functions, math/0306164.
  162. [162]
    L.D. Faddeev, Volkov’s Pentagon for the Modular Quantum Dilogarithm, Funct. Anal. Appl. 45 (2011) 291 [arXiv:1201.6464] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  163. [163]
    F. Nieri, S. Pasquetti, F. Passerini and A. Torrielli, 5D partition functions, q-Virasoro systems and integrable spin-chains, JHEP 12 (2014) 040 [arXiv:1312.1294] [INSPIRE].ADSCrossRefGoogle Scholar
  164. [164]
    S. Pasquetti, Holomorphic blocks and the 5d AGT correspondence, J. Phys. A 50 (2017) 443016 [arXiv:1608.02968] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  165. [165]
    C. Cordova and S.-H. Shao, An Index Formula for Supersymmetric Quantum Mechanics, arXiv:1406.7853 [INSPIRE].
  166. [166]
    F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic Genera of 2d \( \mathcal{N}=2 \) Gauge Theories, Commun. Math. Phys. 333 (2015) 1241 [arXiv:1308.4896] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Center for Quantum Mathematics and Physics (QMAP)University of CaliforniaDavisU.S.A.
  2. 2.Walter Burke Institute for Theoretical PhysicsCalifornia Institute of TechnologyPasadenaU.S.A.
  3. 3.Joseph Henry LaboratoriesPrinceton UniversityPrincetonU.S.A.

Personalised recommendations