Leptogenesis constraints on B − L breaking Higgs boson in TeV scale seesaw models

  • P. S. Bhupal Dev
  • Rabindra N. Mohapatra
  • Yongchao Zhang
Open Access
Regular Article - Theoretical Physics


In the type-I seesaw mechanism for neutrino masses, there exists a BL symmetry, whose breaking leads to the lepton number violating mass of the heavy Majorana neutrinos. This would imply the existence of a new neutral scalar associated with the BL symmetry breaking, analogous to the Higgs boson of the Standard Model. If in such models, the heavy neutrino decays are also responsible for the observed baryon asymmetry of the universe via the leptogenesis mechanism, the new seesaw scalar interactions with the heavy neutrinos will induce additional dilution terms for the heavy neutrino and lepton number densities. We make a detailed study of this dilution effect on the lepton asymmetry in three generic classes of seesaw models with TeV-scale BL symmetry breaking, namely, in an effective theory framework and in scenarios with global or local U(1)BL symmetry. We find that requiring successful leptogenesis imposes stringent constraints on the mass and couplings of the new scalar in all three cases, especially when it is lighter than the heavy neutrinos. We also discuss the implications of these new constraints and prospects of testing leptogenesis in presence of seesaw scalars at colliders.


Beyond Standard Model Higgs Physics Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  2. [2]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Yanagida, Horizontal Symmetry And Masses Of Neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].Google Scholar
  4. [4]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  5. [5]
    S.L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].Google Scholar
  6. [6]
    R.N. Mohapatra et al., Theory of neutrinos: A White paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [INSPIRE].
  7. [7]
    M. Drewes, The Phenomenology of Right Handed Neutrinos, Int. J. Mod. Phys. E 22 (2013) 1330019 [arXiv:1303.6912] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and Collider Physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Y. Cai, T. Han, T. Li and R. Ruiz, Lepton-Number Violation: Seesaw Models and Their Collider Tests, arXiv:1711.02180 [INSPIRE].
  10. [10]
    A. de Gouvêa and P. Vogel, Lepton Flavor and Number Conservation and Physics Beyond the Standard Model, Prog. Part. Nucl. Phys. 71 (2013) 75 [arXiv:1303.4097] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    F. Vissani, Do experiments suggest a hierarchy problem?, Phys. Rev. D 57 (1998) 7027 [hep-ph/9709409] [INSPIRE].
  13. [13]
    J.D. Clarke, R. Foot and R.R. Volkas, Electroweak naturalness in the three-flavor type-I seesaw model and implications for leptogenesis, Phys. Rev. D 91 (2015) 073009 [arXiv:1502.01352] [INSPIRE].ADSGoogle Scholar
  14. [14]
    G. Bambhaniya, P.S. Bhupal Dev, S. Goswami, S. Khan and W. Rodejohann, Naturalness, Vacuum Stability and Leptogenesis in the Minimal Seesaw Model, Phys. Rev. D 95 (2017) 095016 [arXiv:1611.03827] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R.E. Marshak and R.N. Mohapatra, Quark-Lepton Symmetry and BL as the U(1) Generator of the Electroweak Symmetry Group, Phys. Lett. B 91 (1980) 222 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R.N. Mohapatra and R.E. Marshak, Local BL Symmetry of Electroweak Interactions, Majorana Neutrinos and Neutron Oscillations, Phys. Rev. Lett. 44 (1980) 1316 [Erratum ibid. 44 (1980) 1643] [INSPIRE].
  17. [17]
    A. Maiezza, M. Nemevšek and F. Nesti, Lepton Number Violation in Higgs Decay at LHC, Phys. Rev. Lett. 115 (2015) 081802 [arXiv:1503.06834] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Nemevšek, F. Nesti and J.C. Vasquez, Majorana Higgses at colliders, JHEP 04 (2017) 114 [arXiv:1612.06840] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P.S. Bhupal Dev, R.N. Mohapatra and Y. Zhang, Displaced photon signal from a possible light scalar in minimal left-right seesaw model, Phys. Rev. D 95 (2017) 115001 [arXiv:1612.09587] [INSPIRE].ADSGoogle Scholar
  20. [20]
    P.S. Bhupal Dev, R.N. Mohapatra and Y. Zhang, Long Lived Light Scalars as Probe of Low Scale Seesaw Models, Nucl. Phys. B 923 (2017) 179 [arXiv:1703.02471] [INSPIRE].ADSMATHGoogle Scholar
  21. [21]
    P.S. Bhupal Dev, R.N. Mohapatra and Y. Zhang, Long-lived Light Scalars at the LHC, Acta Phys. Polon. B 48 (2017) 969 [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Blanchet and P. Di Bari, The minimal scenario of leptogenesis, New J. Phys. 14 (2012) 125012 [arXiv:1211.0512] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C.S. Fong, E. Nardi and A. Riotto, Leptogenesis in the Universe, Adv. High Energy Phys. 2012 (2012) 158303 [arXiv:1301.3062] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    A. Pilaftsis, Resonant CP-violation induced by particle mixing in transition amplitudes, Nucl. Phys. B 504 (1997) 61 [hep-ph/9702393] [INSPIRE].
  27. [27]
    A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D 56 (1997) 5431 [hep-ph/9707235] [INSPIRE].
  28. [28]
    A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE].
  29. [29]
    P.S. Bhupal Dev, M. Garny, J. Klaric, P. Millington and D. Teresi, Resonant enhancement in leptogenesis, arXiv:1711.02863 [INSPIRE].
  30. [30]
    S. Davidson and A. Ibarra, A Lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].
  31. [31]
    F.F. Deppisch, J. Harz and M. Hirsch, Falsifying High-Scale Leptogenesis at the LHC, Phys. Rev. Lett. 112 (2014) 221601 [arXiv:1312.4447] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    F.F. Deppisch, J. Harz, M. Hirsch, W.-C. Huang and H. Päs, Falsifying High-Scale Baryogenesis with Neutrinoless Double Beta Decay and Lepton Flavor Violation, Phys. Rev. D 92 (2015) 036005 [arXiv:1503.04825] [INSPIRE].ADSGoogle Scholar
  33. [33]
    E.J. Chun et al., Probing Leptogenesis, arXiv:1711.02865 [INSPIRE].
  34. [34]
    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  35. [35]
    R.N. Mohapatra and J.C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].ADSGoogle Scholar
  36. [36]
    G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  37. [37]
    J.-M. Frere, T. Hambye and G. Vertongen, Is leptogenesis falsifiable at LHC?, JHEP 01 (2009) 051 [arXiv:0806.0841] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P.S. Bhupal Dev, C.-H. Lee and R.N. Mohapatra, Leptogenesis Constraints on the Mass of Right-handed Gauge Bosons, Phys. Rev. D 90 (2014) 095012 [arXiv:1408.2820] [INSPIRE].ADSGoogle Scholar
  39. [39]
    P.S. Bhupal Dev, C.-H. Lee and R.N. Mohapatra, TeV Scale Lepton Number Violation and Baryogenesis, J. Phys. Conf. Ser. 631 (2015) 012007 [arXiv:1503.04970] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    M. Dhuria, C. Hati, R. Rangarajan and U. Sarkar, Falsifying leptogenesis for a TeV scale W R± at the LHC , Phys. Rev. D 92 (2015) 031701 [arXiv:1503.07198] [INSPIRE].ADSGoogle Scholar
  41. [41]
    S. Blanchet, Z. Chacko, S.S. Granor and R.N. Mohapatra, Probing Resonant Leptogenesis at the LHC, Phys. Rev. D 82 (2010) 076008 [arXiv:0904.2174] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S. Blanchet, P.S. Bhupal Dev and R.N. Mohapatra, Leptogenesis with TeV Scale Inverse Seesaw in SO(10), Phys. Rev. D 82 (2010) 115025 [arXiv:1010.1471] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. Iso, N. Okada and Y. Orikasa, Resonant Leptogenesis in the Minimal BL Extended Standard Model at TeV, Phys. Rev. D 83 (2011) 093011 [arXiv:1011.4769] [INSPIRE].ADSGoogle Scholar
  44. [44]
    N. Okada, Y. Orikasa and T. Yamada, Minimal Flavor Violation in the Minimal U(1)BL Model and Resonant Leptogenesis, Phys. Rev. D 86 (2012) 076003 [arXiv:1207.1510] [INSPIRE].
  45. [45]
    J. Heeck and D. Teresi, Leptogenesis and neutral gauge bosons, Phys. Rev. D 94 (2016) 095024 [arXiv:1609.03594] [INSPIRE].ADSGoogle Scholar
  46. [46]
    B. Shuve and C. Tamarit, Phase Transitions and Baryogenesis From Decays, JHEP 10 (2017) 122 [arXiv:1704.01979] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Are There Real Goldstone Bosons Associated with Broken Lepton Number?, Phys. Lett. B 98 (1981) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    ATLAS collaboration, Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the Hγγ decay channel at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 753 (2016) 69 [arXiv:1508.02507] [INSPIRE].
  49. [49]
    ATLAS collaboration, Test of CP Invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector, Eur. Phys. J. C 76 (2016) 658 [arXiv:1602.04516] [INSPIRE].
  50. [50]
    CMS collaboration, Combined search for anomalous pseudoscalar HVV couplings in \( VH\left(H\to b\overline{b}\right) \) production and HVV decay, Phys. Lett. B 759(2016)672 [arXiv:1602.04305] [INSPIRE].
  51. [51]
    G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].
  52. [52]
    P.S. Bhupal Dev, P. Millington, A. Pilaftsis and D. Teresi, Flavour Covariant Transport Equations: an Application to Resonant Leptogenesis, Nucl. Phys. B 886 (2014) 569 [arXiv:1404.1003] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  53. [53]
    M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron Rate in the Minimal Standard Model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    G. Lazarides and Q. Shafi, Origin of matter in the inflationary cosmology, Phys. Lett. B 258 (1991) 305 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    G.F. Giudice, M. Peloso, A. Riotto and I. Tkachev, Production of massive fermions at preheating and leptogenesis, JHEP 08 (1999) 014 [hep-ph/9905242] [INSPIRE].
  56. [56]
    T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Leptogenesis in inflaton decay, Phys. Lett. B 464 (1999) 12 [hep-ph/9906366] [INSPIRE].
  57. [57]
    E.K. Akhmedov, V.A. Rubakov and A.Y. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].
  58. [58]
    T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].
  59. [59]
    M. Drewes et al., ARS Leptogenesis, arXiv:1711.02862 [INSPIRE].
  60. [60]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  61. [61]
    J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [INSPIRE].ADSGoogle Scholar
  62. [62]
    D. Aristizabal Sierra, M. Tortola, J.W.F. Valle and A. Vicente, Leptogenesis with a dynamical seesaw scale, JCAP 07 (2014) 052 [arXiv:1405.4706] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    E.K. Akhmedov, Z.G. Berezhiani, R.N. Mohapatra and G. Senjanović, Planck scale effects on the majoron, Phys. Lett. B 299 (1993) 90 [hep-ph/9209285] [INSPIRE].
  64. [64]
    I.Z. Rothstein, K.S. Babu and D. Seckel, Planck scale symmetry breaking and majoron physics, Nucl. Phys. B 403 (1993) 725 [hep-ph/9301213] [INSPIRE].
  65. [65]
    L. Heurtier and Y. Zhang, Supernova Constraints on Massive (Pseudo)Scalar Coupling to Neutrinos, JCAP 02 (2017) 042 [arXiv:1609.05882] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    A. Pilaftsis, Astrophysical and terrestrial constraints on singlet Majoron models, Phys. Rev. D 49 (1994) 2398 [hep-ph/9308258] [INSPIRE].
  67. [67]
    NEMO collaboration, R. Arnold et al., Limits on different Majoron decay modes of 100 Mo and 82 Se for neutrinoless double beta decays in the NEMO-3 experiment, Nucl. Phys. A 765 (2006) 483 [hep-ex/0601021] [INSPIRE].
  68. [68]
    P.S. Bhupal Dev, R.N. Mohapatra and Y. Zhang, Probing the Higgs Sector of the Minimal Left-Right Symmetric Model at Future Hadron Colliders, JHEP 05 (2016) 174 [arXiv:1602.05947] [INSPIRE].ADSGoogle Scholar
  69. [69]
    A. Pilaftsis, Electroweak Resonant Leptogenesis in the Singlet Majoron Model, Phys. Rev. D 78 (2008) 013008 [arXiv:0805.1677] [INSPIRE].ADSGoogle Scholar
  70. [70]
    P.S. Bhupal Dev, R.N. Mohapatra and Y. Zhang, Quark Seesaw, Vectorlike Fermions and Diphoton Excess, JHEP 02 (2016) 186 [arXiv:1512.08507] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    ATLAS collaboration, Search for new high-mass resonances in the dilepton final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-045 (2016) [INSPIRE].
  72. [72]
    CMS collaboration, Search for a high-mass resonance decaying into a dilepton final state in 13 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-031 (2016) [INSPIRE].
  73. [73]
    S. Patra, F.S. Queiroz and W. Rodejohann, Stringent Dilepton Bounds on Left-Right Models using LHC data, Phys. Lett. B 752 (2016) 186 [arXiv:1506.03456] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    M. Klasen, F. Lyonnet and F.S. Queiroz, NLO + NLL collider bounds, Dirac fermion and scalar dark matter in the BL model, Eur. Phys. J. C 77 (2017) 348 [arXiv:1607.06468] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    P.S. Bhupal Dev, R.N. Mohapatra and Y. Zhang, Naturally stable right-handed neutrino dark matter, JHEP 11 (2016) 077 [arXiv:1608.06266] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    CMS collaboration, Search for new physics with high-mass tau lepton pairs in pp collisions at \( \sqrt{s}=13 \) TeV with the CMS detector, CMS-PAS-EXO-16-008 (2016) [INSPIRE].
  77. [77]
    ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36.1 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2017-050 (2017) [INSPIRE].
  78. [78]
    M. Holthausen, M. Lindner and M.A. Schmidt, Radiative Symmetry Breaking of the Minimal Left-Right Symmetric Model, Phys. Rev. D 82 (2010) 055002 [arXiv:0911.0710] [INSPIRE].ADSGoogle Scholar
  79. [79]
    J.P. Chou, D. Curtin and H.J. Lubatti, New Detectors to Explore the Lifetime Frontier, Phys. Lett. B 767 (2017) 29 [arXiv:1606.06298] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    J.A. Evans, Detecting Hidden Particles with MATHUSLA, arXiv:1708.08503 [INSPIRE].
  81. [81]
    LBNE collaboration, C. Adams et al., The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe, arXiv:1307.7335 [INSPIRE].
  82. [82]
    ATLAS collaboration, Search for heavy Higgs bosons A/H decaying to a top-quark pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2016-073 (2016) [INSPIRE].
  83. [83]
    CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].
  84. [84]
    CMS collaboration, Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons, JHEP 10 (2015) 144 [arXiv:1504.00936] [INSPIRE].
  85. [85]
    ATLAS collaboration, Search for an additional, heavy Higgs boson in the HZZ decay channel at \( \sqrt{s}=8 \) TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 45 [arXiv:1507.05930] [INSPIRE].
  86. [86]
    ATLAS collaboration, Searches for heavy diboson resonances in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 09 (2016) 173 [arXiv:1606.04833] [INSPIRE].
  87. [87]
    ATLAS collaboration, Search for Scalar Diphoton Resonances in the Mass Range 65-600 GeV with the ATLAS Detector in pp Collision Data at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 113 (2014) 171801 [arXiv:1407.6583] [INSPIRE].
  88. [88]
    ATLAS collaboration, Search for scalar diphoton resonances with 15.4 fb −1 of data collected at \( \sqrt{s}=13 \) TeV in 2015 and 2016 with the ATLAS detector, ATLAS-CONF-2016-059 (2016) [INSPIRE].
  89. [89]
    CMS collaboration, Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search, Phys. Lett. B 767 (2017) 147 [arXiv:1609.02507] [INSPIRE].
  90. [90]
    CMS collaboration, Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV, Phys. Lett. B 749 (2015) 560 [arXiv:1503.04114] [INSPIRE].
  91. [91]
    ATLAS collaboration, Search for pair production of Higgs bosons in the bbbb final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-049 (2016) [INSPIRE].
  92. [92]
    CMS collaboration, Search for two Higgs bosons in final states containing two photons and two bottom quarks in proton-proton collisions at 8 TeV, Phys. Rev. D 94 (2016) 052012 [arXiv:1603.06896] [INSPIRE].
  93. [93]
    A. Falkowski, C. Gross and O. Lebedev, A second Higgs from the Higgs portal, JHEP 05 (2015) 057 [arXiv:1502.01361] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    L. Bian, N. Chen and Y. Zhang, CP violation effects in the diphoton spectrum of heavy scalars, Phys. Rev. D 96 (2017) 095008 [arXiv:1706.09425] [INSPIRE].ADSGoogle Scholar
  95. [95]
    OPAL, DELPHI, ALEPH, L3 collaborations and LEP Working Group for Higgs boson searches, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].
  96. [96]
    BaBar collaboration, B. Aubert et al., Evidence for the rare decay BK + and measurement of the BKℓ + branching fraction, Phys. Rev. Lett. 91 (2003) 221802 [hep-ex/0308042] [INSPIRE].
  97. [97]
    Belle collaboration, J.T. Wei et al., Measurement of the Differential Branching Fraction and Forward-Backword Asymmetry for BK (∗) + , Phys. Rev. Lett. 103 (2009) 171801 [arXiv:0904.0770] [INSPIRE].
  98. [98]
    LHCb collaboration, Differential branching fraction and angular analysis of the B +K + μ + μ decay, JHEP 02 (2013) 105 [arXiv:1209.4284] [INSPIRE].
  99. [99]
    M.E. Peskin, Comparison of LHC and ILC Capabilities for Higgs Boson Coupling Measurements, arXiv:1207.2516 [INSPIRE].
  100. [100]
    H. Baer et al., The International Linear Collider Technical Design Report. Volume 2: Physics, arXiv:1306.6352 [INSPIRE].
  101. [101]
    C. Garcia-Cely and J. Heeck, Neutrino Lines from Majoron Dark Matter, JHEP 05 (2017) 102 [arXiv:1701.07209] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [Erratum ibid. C 75 (2015) 408] [arXiv:1502.01518] [INSPIRE].
  103. [103]
    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].
  104. [104]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032005 [arXiv:1604.07773] [INSPIRE].
  105. [105]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  106. [106]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  107. [107]
    P.S. Bhupal Dev, R. Franceschini and R.N. Mohapatra, Bounds on TeV Seesaw Models from LHC Higgs Data, Phys. Rev. D 86 (2012) 093010 [arXiv:1207.2756] [INSPIRE].ADSGoogle Scholar
  108. [108]
    C.G. Cely, A. Ibarra, E. Molinaro and S.T. Petcov, Higgs Decays in the Low Scale Type I See-Saw Model, Phys. Lett. B 718 (2013) 957 [arXiv:1208.3654] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    A.G. Hessler, A. Ibarra, E. Molinaro and S. Vogl, Impact of the Higgs boson on the production of exotic particles at the LHC, Phys. Rev. D 91 (2015) 115004 [arXiv:1408.0983] [INSPIRE].ADSGoogle Scholar
  110. [110]
    A. Das, P.S. Bhupal Dev and C.S. Kim, Constraining Sterile Neutrinos from Precision Higgs Data, Phys. Rev. D 95 (2017) 115013 [arXiv:1704.00880] [INSPIRE].ADSGoogle Scholar
  111. [111]
    A. Das, Y. Gao and T. Kamon, Heavy Neutrino Search via the Higgs boson at the LHC, arXiv:1704.00881 [INSPIRE].
  112. [112]
    R. Ruiz, M. Spannowsky and P. Waite, Heavy neutrinos from gluon fusion, Phys. Rev. D 96 (2017) 055042 [arXiv:1706.02298] [INSPIRE].ADSGoogle Scholar
  113. [113]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].
  114. [114]
    LHC Higgs Cross section Working Group, S. Heinemeyer et al., Handbook of LHC Higgs Cross Sections: 3. Higgs Properties: Report of the LHC Higgs Cross Section Working Group, CERN-2013-004 [FERMILAB-CONF-13-667-T] [arXiv:1307.1347] [INSPIRE].
  115. [115]
    N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a 100 TeV proton-proton collider, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena, CERN Yellow Rep. Monogr. 3 (2017) 441 [arXiv:1606.00947] [INSPIRE].Google Scholar
  117. [117]
    R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, CERN Yellow Rep. Monogr. 3 (2017) 255 [arXiv:1606.09408] [INSPIRE].Google Scholar
  118. [118]
    CEPC-SPPC Study Group, M. Ahmad et al., CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector, IHEP-CEPC-DR-2015-01 (2015) [IHEP-TH-2015-01] [IHEP-EP-2015-01] [INSPIRE].
  119. [119]
    L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, Phenomenology of the minimal BL extension of the Standard model: Z and neutrinos, Phys. Rev. D 80 (2009) 055030 [arXiv:0812.4313] [INSPIRE].ADSGoogle Scholar
  120. [120]
    F.F. Deppisch, N. Desai and J.W.F. Valle, Is charged lepton flavor violation a high energy phenomenon?, Phys. Rev. D 89 (2014) 051302 [arXiv:1308.6789] [INSPIRE].ADSGoogle Scholar
  121. [121]
    Z. Kang, P. Ko and J. Li, New Avenues to Heavy Right-handed Neutrinos with Pair Production at Hadronic Colliders, Phys. Rev. D 93 (2016) 075037 [arXiv:1512.08373] [INSPIRE].ADSGoogle Scholar
  122. [122]
    A. Das, Pair production of heavy neutrinos in next-to-leading order QCD at the hadron colliders in the inverse seesaw framework, arXiv:1701.04946 [INSPIRE].
  123. [123]
    P. Cox, C. Han and T.T. Yanagida, LHC Search for Right-handed Neutrinos in Z Models, JHEP 01 (2018) 037 [arXiv:1707.04532] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    A. Das, N. Okada and D. Raut, Enhanced pair production of heavy Majorana neutrinos at LHC, arXiv:1710.03377 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • P. S. Bhupal Dev
    • 1
  • Rabindra N. Mohapatra
    • 2
  • Yongchao Zhang
    • 1
    • 3
  1. 1.Department of Physics and McDonnell Center for the Space SciencesWashington UniversitySt. LouisU.S.A.
  2. 2.Maryland Center for Fundamental Physics, Department of PhysicsUniversity of MarylandCollege ParkU.S.A.
  3. 3.Service de Physique Théorique, Université Libre de Bruxelles, Boulevard du TriompheBrusselsBelgium

Personalised recommendations