Evidence for inflation in an axion landscape

Open Access
Regular Article - Theoretical Physics
  • 16 Downloads

Abstract

We discuss inflation models within supersymmetry and supergravity frameworks with a landscape of chiral superfields and one U(1) shift symmetry which is broken by non-perturbative symmetry breaking terms in the superpotential. We label the pseudo scalar component of the chiral fields axions and their real parts saxions. Thus in the models only one combination of axions will be a pseudo-Nambu-Goldstone-boson which will act as the inflaton. The proposed models constitute consistent inflation for the following reasons: the inflation potential arises dynamically with stabilized saxions, the axion decay constant can lie in the sub-Planckian region, and consistency with the Planck data is achieved. The axion landscape consisting of m axion pairs is assumed with the axions in each pair having opposite charges. A fast roll-slow roll splitting mechanism for the axion potential is proposed which is realized with a special choice of the axion basis. In this basis the 2m coupled equations split into 2m − 1 equations which enter in the fast roll and there is one unique linear combination of the 2m fields which controls the slow roll and thus the power spectrum of curvature and tensor perturbations. It is shown that a significant part of the parameter space exists where inflation is successful, i.e., Npivot = [50, 60], the spectral index n s of curvature perturbations, and the ratio r of the power spectrum of tensor perturbations and curvature perturbations, lie in the experimentally allowed regions given by the Planck experiment. Further, it is shown that the model allows for a significant region of the parameter space where the effective axion decay constant can lie in the sub-Planckian domain. An analysis of the tensor spectral index n t is also given and the future experimental data which constraints n t will further narrow down the parameter space of the proposed inflationary models. Topics of further interest include implications of the model for gravitational waves and non-Gaussianities in the curvature perturbations. Also of interest is embedding of the model in strings which are expected to possess a large axionic landscape.

Keywords

Phenomenological Models Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSMATHGoogle Scholar
  2. [2]
    A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  3. [3]
    A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon. Not. Roy. Astron. Soc. 195 (1981) 467 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A.D. Linde, Chaotic Inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A.D. Linde, Particle physics and inflationary cosmology, Contemp. Concepts Phys. 5 (1990) 1 [hep-th/0503203] [INSPIRE].Google Scholar
  8. [8]
    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field Theory of Inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP Lett. 33 (1981) 532 [INSPIRE].ADSGoogle Scholar
  10. [10]
    S.W. Hawking, The Development of Irregularities in a Single Bubble Inflationary Universe, Phys. Lett. B 115 (1982) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A.A. Starobinsky, Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett. B 117 (1982) 175 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A.H. Guth and S.Y. Pi, Fluctuations in the New Inflationary Universe, Phys. Rev. Lett. 49 (1982) 1110 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous Creation of Almost Scale — Free Density Perturbations in an Inflationary Universe, Phys. Rev. D 28 (1983) 679 [INSPIRE].ADSGoogle Scholar
  14. [14]
    Planck collaboration, R. Adam et al., Planck 2015 results. I. Overview of products and scientific results, Astron. Astrophys. 594 (2016) A1 [arXiv:1502.01582] [INSPIRE].
  15. [15]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
  16. [16]
    BICEP2 and Keck Array collaborations, P.A.R. Ade et al., Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band, Phys. Rev. Lett. 116 (2016) 031302 [arXiv:1510.09217] [INSPIRE].
  17. [17]
    K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo-Nambu-Goldstone bosons, Phys. Rev. Lett. 65 (1990) 3233 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F.C. Adams, J.R. Bond, K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation: Particle physics models, power law spectra for large scale structure and constraints from COBE, Phys. Rev. D 47 (1993) 426 [hep-ph/9207245] [INSPIRE].
  19. [19]
    T. Banks, M. Dine, P.J. Fox and E. Gorbatov, On the possibility of large axion decay constants, JCAP 06 (2003) 001 [hep-th/0303252] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    P. Svrček and E. Witten, Axions In String Theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005 [hep-ph/0409138] [INSPIRE].
  22. [22]
    C. Long, L. McAllister and P. McGuirk, Aligned Natural Inflation in String Theory, Phys. Rev. D 90 (2014) 023501 [arXiv:1404.7852] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Berg, E. Pajer and S. Sjors, Dante’s Inferno, Phys. Rev. D 81 (2010) 103535 [arXiv:0912.1341] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N-flation, JCAP 08 (2008) 003 [hep-th/0507205] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Easther and L. McAllister, Random matrices and the spectrum of N-flation, JCAP 05 (2006) 018 [hep-th/0512102] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    T.W. Grimm, Axion inflation in type-II string theory, Phys. Rev. D 77 (2008) 126007 [arXiv:0710.3883] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    R. Kallosh, N. Sivanandam and M. Soroush, Axion Inflation and Gravity Waves in String Theory, Phys. Rev. D 77 (2008) 043501 [arXiv:0710.3429] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    M.E. Olsson, Inflation assisted by heterotic axions, JCAP 04 (2007) 019 [hep-th/0702109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    D. Battefeld and T. Battefeld, Non-Gaussianities in N-flation, JCAP 05 (2007) 012 [hep-th/0703012] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    S.A. Kim, A.R. Liddle and D. Seery, Non-Gaussianity in axion N-flation models: detailed predictions and mass spectra, Phys. Rev. D 85 (2012) 023532 [arXiv:1108.2944] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S.A. Kim, A.R. Liddle and D. Seery, Non-Gaussianity in axion Nflation models, Phys. Rev. Lett. 105 (2010) 181302 [arXiv:1005.4410] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    T. Rudelius, On the Possibility of Large Axion Moduli Spaces, JCAP 04 (2015) 049 [arXiv:1409.5793] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    N. Arkani-Hamed, H.-C. Cheng, P. Creminelli and L. Randall, Pseudonatural inflation, JCAP 07 (2003) 003 [hep-th/0302034] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    D.E. Kaplan and N.J. Weiner, Little inflatons and gauge inflation, JCAP 02 (2004) 005 [hep-ph/0302014] [INSPIRE].
  35. [35]
    D. Green, B. Horn, L. Senatore and E. Silverstein, Trapped Inflation, Phys. Rev. D 80 (2009) 063533 [arXiv:0902.1006] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].ADSGoogle Scholar
  37. [37]
    E. Pajer and M. Peloso, A review of Axion Inflation in the era of Planck, Class. Quant. Grav. 30 (2013) 214002 [arXiv:1305.3557] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    D.J.E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    P. Nath, Supersymmetry, Supergravity, and Unification, Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge, U.K. (2016).Google Scholar
  40. [40]
    J.R. Ellis, D.V. Nanopoulos, K.A. Olive and K. Tamvakis, Primordial supersymmetric inflation, Nucl. Phys. B 221 (1983) 524 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    H. Murayama, H. Suzuki, T. Yanagida and J. Yokoyama, Chaotic inflation and baryogenesis in supergravity, Phys. Rev. D 50 (1994) R2356 [hep-ph/9311326] [INSPIRE].
  42. [42]
    E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart and D. Wands, False vacuum inflation with Einstein gravity, Phys. Rev. D 49 (1994) 6410 [astro-ph/9401011] [INSPIRE].
  43. [43]
    E.D. Stewart, Inflation, supergravity and superstrings, Phys. Rev. D 51 (1995) 6847 [hep-ph/9405389] [INSPIRE].
  44. [44]
    G.R. Dvali, Q. Shafi and R.K. Schaefer, Large scale structure and supersymmetric inflation without fine tuning, Phys. Rev. Lett. 73 (1994) 1886 [hep-ph/9406319] [INSPIRE].
  45. [45]
    P. Binetruy and G.R. Dvali, D term inflation, Phys. Lett. B 388 (1996) 241 [hep-ph/9606342] [INSPIRE].
  46. [46]
    B. Körs and P. Nath, Hierarchically split supersymmetry with Fayet-Iliopoulos D-terms in string theory, Nucl. Phys. B 711 (2005) 112 [hep-th/0411201] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    M. Yamaguchi, Supergravity based inflation models: a review, Class. Quant. Grav. 28 (2011) 103001 [arXiv:1101.2488] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity, Phys. Rev. Lett. 85 (2000) 3572 [hep-ph/0004243] [INSPIRE].
  49. [49]
    M. Yamaguchi and J. Yokoyama, New inflation in supergravity with a chaotic initial condition, Phys. Rev. D 63 (2001) 043506 [hep-ph/0007021] [INSPIRE].
  50. [50]
    D. Baumann and D. Green, Signatures of Supersymmetry from the Early Universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].ADSGoogle Scholar
  51. [51]
    M. Yamaguchi, Natural double inflation in supergravity, Phys. Rev. D 64 (2001) 063502 [hep-ph/0103045] [INSPIRE].
  52. [52]
    M. Kawasaki and M. Yamaguchi, A supersymmetric topological inflation model, Phys. Rev. D 65 (2002) 103518 [hep-ph/0112093] [INSPIRE].
  53. [53]
    M. Yamaguchi and J. Yokoyama, Chaotic hybrid new inflation in supergravity with a running spectral index, Phys. Rev. D 68 (2003) 123520 [hep-ph/0307373] [INSPIRE].
  54. [54]
    P. Brax and J. Martin, Shift symmetry and inflation in supergravity, Phys. Rev. D 72 (2005) 023518 [hep-th/0504168] [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    R. Kallosh, On inflation in string theory, Lect. Notes Phys. 738 (2008) 119 [hep-th/0702059] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  56. [56]
    S.C. Davis and M. Postma, SUGRA chaotic inflation and moduli stabilisation, JCAP 03 (2008) 015 [arXiv:0801.4696] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    F. Takahashi, Linear Inflation from Running Kinetic Term in Supergravity, Phys. Lett. B 693 (2010) 140 [arXiv:1006.2801] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    K. Nakayama and F. Takahashi, Running Kinetic Inflation, JCAP 11 (2010) 009 [arXiv:1008.2956] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    R. Kallosh and A. Linde, New models of chaotic inflation in supergravity, JCAP 11 (2010) 011 [arXiv:1008.3375] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    M. Kawasaki, N. Kitajima and K. Nakayama, Cosmological Aspects of Inflation in a Supersymmetric Axion Model, Phys. Rev. D 83 (2011) 123521 [arXiv:1104.1262] [INSPIRE].ADSGoogle Scholar
  61. [61]
    J. Ellis, D.V. Nanopoulos and K.A. Olive, No-Scale Supergravity Realization of the Starobinsky Model of Inflation, Phys. Rev. Lett. 111 (2013) 111301 [Erratum ibid. 111 (2013) 129902] [arXiv:1305.1247] [INSPIRE].
  62. [62]
    M. Czerny, T. Higaki and F. Takahashi, Multi-Natural Inflation in Supergravity, JHEP 05 (2014) 144 [arXiv:1403.0410] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    T. Kobayashi, S. Uemura and J. Yamamoto, Polyinstanton axion inflation, Phys. Rev. D 96 (2017) 026007 [arXiv:1705.04088] [INSPIRE].ADSGoogle Scholar
  64. [64]
    N. Okada and Q. Shafi, Gravity Waves, Axion and Gravitino Dark Matter in μ-Hybrid Inflation, arXiv:1709.04610 [INSPIRE].
  65. [65]
    J.J. Blanco-Pillado et al., Racetrack inflation, JHEP 11 (2004) 063 [hep-th/0406230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    S. Krippendorf and F. Quevedo, Metastable SUSY Breaking, de Sitter Moduli Stabilisation and Kähler Moduli Inflation, JHEP 11 (2009) 039 [arXiv:0901.0683] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M. Cicoli, K. Dutta, A. Maharana and F. Quevedo, Moduli Vacuum Misalignment and Precise Predictions in String Inflation, JCAP 08 (2016) 006 [arXiv:1604.08512] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].ADSGoogle Scholar
  69. [69]
    S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    F. Wilczek, Problem of Strong p and t Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    J. Halverson, C. Long and P. Nath, Ultralight axion in supersymmetry and strings and cosmology at small scales, Phys. Rev. D 96 (2017) 056025 [arXiv:1703.07779] [INSPIRE].ADSGoogle Scholar
  72. [72]
    M. Cvetič, J. Halverson and R. Richter, Mass Hierarchies from MSSM Orientifold Compactifications, JHEP 07 (2010) 005 [arXiv:0909.4292] [INSPIRE].ADSMATHGoogle Scholar
  73. [73]
    Y. Nambu and G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. 1., Phys. Rev. 122 (1961) 345 [INSPIRE].
  74. [74]
    J. Goldstone, Field Theories with Superconductor Solutions, Nuovo Cim. 19 (1961) 154 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  75. [75]
    J. Goldstone, A. Salam and S. Weinberg, Broken Symmetries, Phys. Rev. 127 (1962) 965 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  76. [76]
    A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally Supersymmetric Grand Unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect, Nucl. Phys. B 212 (1983) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    P. Nath, R.L. Arnowitt and A.H. Chamseddine, Gauge Hierarchy in Supergravity Guts, Nucl. Phys. B 227 (1983) 121 [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    S.M. Leach, A.R. Liddle, J. Martin and D.J. Schwarz, Cosmological parameter estimation and the inflationary cosmology, Phys. Rev. D 66 (2002) 023515 [astro-ph/0202094] [INSPIRE].
  80. [80]
    M. Dias, J. Frazer and D. Seery, Computing observables in curved multifield models of inflation — A guide (with code) to the transport method, JCAP 12 (2015) 030 [arXiv:1502.03125] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  81. [81]
    D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation, Phys. Rept. 314 (1999) 1 [hep-ph/9807278] [INSPIRE].
  82. [82]
    A.R. Liddle and D.H. Lyth, Cosmological inflation and large scale structure, Cambridge University Press, Cambridge, U.K., (2000).CrossRefMATHGoogle Scholar
  83. [83]
    D. Langlois, Lectures on inflation and cosmological perturbations, Lect. Notes Phys. 800 (2010) 1 [arXiv:1001.5259] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  84. [84]
    D. Baumann, Inflation, in Physics of the large and the small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, U.S.A., 1-26 June 2009, pp. 523–686, arXiv:0907.5424, [INSPIRE].
  85. [85]
    T.S. Bunch and P.C.W. Davies, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117.ADSMathSciNetCrossRefGoogle Scholar
  86. [86]
    N.A. Chernikov and E.A. Tagirov, Quantum theory of scalar fields in de Sitter space-time, Ann. Inst. H. Poincare Phys. Theor. A 9 (1968) 109.MathSciNetMATHGoogle Scholar
  87. [87]
    C. Schomblond and P. Spindel, Unicity Conditions of the Scalar Field Propagator Delta(1) (x,y) in de Sitter Universe, Ann. Inst. H. Poincare Phys. Theor. 25 (1976) 67.ADSMATHGoogle Scholar
  88. [88]
    R.L. Arnowitt and P. Nath, SUSY mass spectrum in SU(5) supergravity grand unification, Phys. Rev. Lett. 69 (1992) 725 [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].
  90. [90]
    M.A. Amin, M.P. Hertzberg, D.I. Kaiser and J. Karouby, Nonperturbative Dynamics Of Reheating After Inflation: A Review, Int. J. Mod. Phys. D 24 (2014) 1530003 [arXiv:1410.3808] [INSPIRE].ADSMATHGoogle Scholar
  91. [91]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  92. [92]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  93. [93]
    Z. Lalak, G.G. Ross and S. Sarkar, Racetrack inflation and assisted moduli stabilisation, Nucl. Phys. B 766 (2007) 1 [hep-th/0503178] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  94. [94]
    B. Greene and A. Weltman, An effect of αcorrections on racetrack inflation, JHEP 03 (2006) 035 [hep-th/0512135] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  95. [95]
    J.J. Blanco-Pillado et al., Inflating in a better racetrack, JHEP 09 (2006) 002 [hep-th/0603129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  96. [96]
    C.-Y. Sun and D.-H. Zhang, The Non-Gaussianity of Racetrack Inflation Models, Commun. Theor. Phys. 48 (2007) 189 [astro-ph/0604298] [INSPIRE].
  97. [97]
    P. Brax, A.-C. Davis, S.C. Davis, R. Jeannerot and M. Postma, D-term Uplifted Racetrack Inflation, JCAP 01 (2008) 008 [arXiv:0710.4876] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  98. [98]
    W.-Y. Wen, Inflation in a refined racetrack, arXiv:0712.0458 [INSPIRE].
  99. [99]
    P. Brax, S.C. Davis and M. Postma, The robustness of n s ≲ 0.95 in racetrack inflation, JCAP 02 (2008) 020 [arXiv:0712.0535] [INSPIRE].
  100. [100]
    W.-Y. Wen, Effects of open string moduli on racetrack inflation, Mod. Phys. Lett. A 23 (2008) 1589 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  101. [101]
    P. Brax, C. van de Bruck, A.-C. Davis, S.C. Davis, R. Jeannerot and M. Postma, Racetrack Inflation and Cosmic Strings, JCAP 07 (2008) 018 [arXiv:0805.1171] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  102. [102]
    H.-Y. Chen, L.-Y. Hung and G. Shiu, Inflation on an Open Racetrack, JHEP 03 (2009) 083 [arXiv:0901.0267] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  103. [103]
    M. Badziak and M. Olechowski, Inflation with racetrack superpotential and matter field, JCAP 02 (2010) 026 [arXiv:0911.1213] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    R. Allahverdi, B. Dutta and K. Sinha, Low-scale Inflation and Supersymmetry Breaking in Racetrack Models, Phys. Rev. D 81 (2010) 083538 [arXiv:0912.2324] [INSPIRE].ADSGoogle Scholar
  105. [105]
    M. Olechowski, Inflation with racetrack superpotential and matter field, J. Phys. Conf. Ser. 259 (2010) 012028 [INSPIRE].
  106. [106]
    M. Badziak, F-term uplifted racetrack inflation, in Proceedings, 45th Rencontres de Moriond on Cosmology: La Thuile, Italy, March 13-20, 2010, pp. 265–268, 2010, arXiv:1005.5537, [INSPIRE].
  107. [107]
    T. Higaki and F. Takahashi, Natural and Multi-Natural Inflation in Axion Landscape, JHEP 07 (2014) 074 [arXiv:1404.6923] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    T. Higaki and F. Takahashi, Axion Landscape and Natural Inflation, Phys. Lett. B 744 (2015) 153 [arXiv:1409.8409] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    K. Kadota, T. Kobayashi, A. Oikawa, N. Omoto, H. Otsuka and T.H. Tatsuishi, Small field axion inflation with sub-Planckian decay constant, JCAP 10 (2016) 013 [arXiv:1606.03219] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  110. [110]
    T. Kobayashi, A. Oikawa, N. Omoto, H. Otsuka and I. Saga, Constraints on small-field axion inflation, Phys. Rev. D 95 (2017) 063514 [arXiv:1609.05624] [INSPIRE].ADSGoogle Scholar
  111. [111]
    A. Ernst, A. Ringwald and C. Tamarit, Axion Predictions in SO(10) × U(1)PQ Models, arXiv:1801.04906 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsNortheastern UniversityBostonU.S.A.

Personalised recommendations