Advertisement

Higher spin superfield interactions with complex linear supermultiplet: conserved supercurrents and cubic vertices

  • Konstantinos Koutrolikos
  • Pavel Kočí
  • Rikard von Unge
Open Access
Regular Article - Theoretical Physics

Abstract

We continue the program of constructing cubic interactions between matter and higher spin supermultiplets. In this work we consider a complex linear superfield and we find that it can have cubic interactions only with supermultiplets with propagating spins j = s + 1, j = s + 1/2 for any non-negative integer s (half-integer superspin super-multiplets). We construct the higher spin supercurrent and supertrace, these compose the canonical supercurrent multiplet which generates the cubic interactions. We also prove that for every s there exist an alternative minimal supercurrent multiplet, with vanishing supertrace. Furthermore, we perform a duality transformation in order to make contact with the corresponding chiral theory. An interesting result is that the dual chiral theory has the same coupling constant with the complex linear theory only for odd values of s, whereas for even values of s the coupling constants for the two theories have opposite signs. Additionally we explore the component structure of the supercurrent multiplet and derive the higher spin currents. We find two bosonic currents for spins j = s and j = s + 1 and one fermionic current for spin j = s + 1/2.

Keywords

Higher Spin Symmetry Superspaces Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I.L. Buchbinder, S.J. Gates Jr. and K. Koutrolikos, Higher Spin Superfield interactions with the Chiral Supermultiplet: Conserved Supercurrents and Cubic Vertices, Universe 4 (2018) 6 [arXiv:1708.06262] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S.J. Gates Jr. and W. Siegel, Variant Superfield Representations, Nucl. Phys. B 187 (1981) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P. Kočí, K. Koutrolikos and R. von Unge, Complex linear superfields, Supercurrents and Supergravities, JHEP 02 (2017) 076 [arXiv:1612.08706] [INSPIRE].
  4. [4]
    J. Hutomo and S.M. Kuzenko, Non-conformal higher spin supercurrents, Phys. Lett. B 778 (2018) 242 [arXiv:1710.10837] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Hutomo and S.M. Kuzenko, The massless integer superspin multiplets revisited, JHEP 02 (2018) 137 [arXiv:1711.11364] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    O.A. Gelfond, E.D. Skvortsov and M.A. Vasiliev, Higher spin conformal currents in Minkowski space, Theor. Math. Phys. 154 (2008) 294 [hep-th/0601106] [INSPIRE].CrossRefzbMATHGoogle Scholar
  7. [7]
    F.A. Berends, G.J.H. Burgers and H. van Dam, On the Theoretical Problems in Constructing Interactions Involving Higher Spin Massless Particles, Nucl. Phys. B 260 (1985) 295 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    T.L. Curtright, Massless field supermultiplets with arbitrary spin, Phys. Lett. B 85 (1979) 219 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T.L. Curtright, High Spin Fields, AIP Conf. Proc. 68 (1980) 985 [INSPIRE].ADSGoogle Scholar
  10. [10]
    M.A. Vasiliev, Gauge form of description of massless fields with arbitrary spin (in Russian), Yad. Fiz. 32 (1980) 855 [Sov. J. Nucl. Phys. 32 (1980) 439] [INSPIRE].
  11. [11]
    S.M. Kuzenko, A.G. Sibiryakov and V.V. Postnikov, Massless gauge superfields of higher half integer superspins, JETP Lett. 57 (1993) 534 [Pisma Zh. Eksp. Teor. Fiz. 57 (1993) 521] [INSPIRE].
  12. [12]
    S.M. Kuzenko and A.G. Sibiryakov, Massless gauge superfields of higher integer superspins, JETP Lett. 57 (1993) 539 [Pisma Zh. Eksp. Teor. Fiz. 57 (1993) 526] [INSPIRE].
  13. [13]
    S.M. Kuzenko and A.G. Sibiryakov, Free massless higher superspin superfields on the anti-de Sitter superspace, Phys. Atom. Nucl. 57 (1994) 1257 [Yad. Fiz. 57 (1994) 1326] [arXiv:1112.4612] [INSPIRE].
  14. [14]
    S.J. Gates Jr. and K. Koutrolikos, On 4D, \( \mathcal{N}=1 \) Massless Gauge Superfields of Higher Superspin: Half-Odd-Integer Case, arXiv:1310.7386 [INSPIRE].
  15. [15]
    S.J. Gates Jr. and K. Koutrolikos, On 4D, \( \mathcal{N}=1 \) massless gauge superfields of arbitrary superhelicity, JHEP 06 (2014) 098 [arXiv:1310.7385] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    I.L. Buchbinder and K. Koutrolikos, BRST Analysis of the Supersymmetric Higher Spin Field Models, JHEP 12 (2015) 106 [arXiv:1510.06569] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    S.J. Gates Jr. and K. Koutrolikos, From Diophantus to Supergravity and massless higher spin multiplets, JHEP 11 (2017) 063 [arXiv:1707.00194] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    S.J. Gates Jr., M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and One Lessons in Supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].zbMATHGoogle Scholar
  19. [19]
    S.M. Kuzenko, R. Manvelyan and S. Theisen, Off-shell superconformal higher spin multiplets in four dimensions, JHEP 07 (2017) 034 [arXiv:1701.00682] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    R.R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys. B 759 (2006) 147 [hep-th/0512342] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Magro, I. Sachs and S. Wolf, Superfield Noether procedure, Annals Phys. 298 (2002) 123 [hep-th/0110131] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    S. Deser, How special relativity determines the signs of the nonrelativistic, Coulomb and Newtonian, forces, Am. J. Phys. 73 (2005) 6 [gr-qc/0411026] [INSPIRE].
  23. [23]
    F.A. Berends, G.J.H. Burgers and H. van Dam, Explicit Construction of Conserved Currents for Massless Fields of Arbitrary Spin, Nucl. Phys. B 271 (1986) 429 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    D. Anselmi, Higher spin current multiplets in operator product expansions, Class. Quant. Grav. 17 (2000) 1383 [hep-th/9906167] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    X. Bekaert, E. Joung and J. Mourad, On higher spin interactions with matter, JHEP 05 (2009) 126 [arXiv:0903.3338] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Konstantinos Koutrolikos
    • 1
  • Pavel Kočí
    • 1
  • Rikard von Unge
    • 1
  1. 1.Institute for Theoretical Physics and AstrophysicsMasaryk UniversityBrnoCzech Republic

Personalised recommendations