Exact RG flow equations and quantum gravity

  • S.P. de Alwis
Open Access
Regular Article - Theoretical Physics


We discuss the different forms of the functional RG equation and their relation to each other. In particular we suggest a generalized background field version that is close in spirit to the Polchinski equation as an alternative to the Wetterich equation to study Weinberg’s asymptotic safety program for defining quantum gravity, and argue that the former is better suited for this purpose. Using the heat kernel expansion and proper time regularization we find evidence in support of this program in agreement with previous work.


Models of Quantum Gravity Renormalization Group 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K.G. Wilson and J.B. Kogut, The Renormalization group and the ϵ-expansion, Phys. Rept. 12 (1974) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. Polchinski, Renormalization and Effective Lagrangians, Nucl. Phys. B 231 (1984) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [arXiv:1710.05815] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T.R. Morris, The Exact renormalization group and approximate solutions, Int. J. Mod. Phys. A 9 (1994) 2411 [hep-ph/9308265] [INSPIRE].
  5. [5]
    T.R. Morris, Derivative expansion of the exact renormalization group, Phys. Lett. B 329 (1994) 241 [hep-ph/9403340] [INSPIRE].
  6. [6]
    T.R. Morris, On truncations of the exact renormalization group, Phys. Lett. B 334 (1994) 355 [hep-th/9405190] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T.R. Morris, Elements of the continuous renormalization group, Prog. Theor. Phys. Suppl. 131 (1998) 395 [hep-th/9802039] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    C. Bagnuls and C. Bervillier, Exact renormalization group equations. An Introductory review, Phys. Rept. 348 (2001) 91 [hep-th/0002034] [INSPIRE].
  9. [9]
    H. Gies, Introduction to the functional RG and applications to gauge theories, Lect. Notes Phys. 852 (2012) 287 [hep-ph/0611146] [INSPIRE].
  10. [10]
    O.J. Rosten, Fundamentals of the Exact Renormalization Group, Phys. Rept. 511 (2012) 177 [arXiv:1003.1366] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Codello, R. Percacci and C. Rahmede, Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation, Annals Phys. 324 (2009) 414 [arXiv:0805.2909] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. Reuter and F. Saueressig, Quantum Einstein Gravity, New J. Phys. 14 (2012) 055022 [arXiv:1202.2274] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    R. Percacci, Introduction to covariant quantum gravity and asymptotic safety, World Scientific (2017) [ISBN: 9813207175].Google Scholar
  14. [14]
    S. Weinberg, Critical phenomena for field theorists, in proceedings of the 14th International School of Subnuclear Physics: Understanding the Fundamental Constitutents of Matter Erice, Italy, 23 July - 8 August 1976.Google Scholar
  15. [15]
    S. Weinberg, General Relativity, an Einstein Centenary Survey, S.W. Hawking and W. Israel eds., Cambridge University Press (1979).Google Scholar
  16. [16]
    L. Canet, B. Delamotte, D. Mouhanna and J. Vidal, Nonperturbative renormalization group approach to the Ising model: A Derivative expansion at order ∂ 4, Phys. Rev. B 68 (2003) 064421 [hep-th/0302227] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D.F. Litim and D. Zappala, Ising exponents from the functional renormalisation group, Phys. Rev. D 83 (2011) 085009 [arXiv:1009.1948] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Braun, H. Gies and D.D. Scherer, Asymptotic safety: A simple example, Phys. Rev. D 83 (2011) 085012 [arXiv:1011.1456].ADSGoogle Scholar
  19. [19]
    A. Eichhorn, D. Mesterházy and M.M. Scherer, Multicritical behavior in models with two competing order parameters, Phys. Rev. E 88 (2013) 042141 [arXiv:1306.2952] [INSPIRE].ADSGoogle Scholar
  20. [20]
    B. Knorr, Ising and Gross-Neveu model in next-to-leading order, Phys. Rev. B 94 (2016) 245102 [arXiv:1609.03824] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Rechenberger and F. Saueressig, The R 2 phase-diagram of QEG and its spectral dimension, Phys. Rev. D 86 (2012) 024018 [arXiv:1206.0657] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Eichhorn and A. Held, Top mass from asymptotic safety, Phys. Lett. B 777 (2018) 217 [arXiv:1707.01107] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    H. Gies, R. Sondenheimer and M. Warschinke, Impact of generalized Yukawa interactions on the lower Higgs mass bound, Eur. Phys. J. C 77 (2017) 743 [arXiv:1707.04394] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Weinberg, Asymptotically Safe Inflation, Phys. Rev. D 81 (2010) 083535 [arXiv:0911.3165] [INSPIRE].ADSGoogle Scholar
  26. [26]
    T. Jacobson and A. Satz, Black hole entanglement entropy and the renormalization group, Phys. Rev. D 87 (2013) 084047 [arXiv:1212.6824] [INSPIRE].ADSGoogle Scholar
  27. [27]
    E. Manrique and M. Reuter, Bare versus effective fixed point action in asymptotic safety: the reconstruction problem, PoS(CLAQG08)001 [arXiv:0905.4220] [INSPIRE].
  28. [28]
    G.P. Vacca and L. Zambelli, Functional RG flow equation: regularization and coarse-graining in phase space, Phys. Rev. D 83 (2011) 125024 [arXiv:1103.2219] [INSPIRE].ADSGoogle Scholar
  29. [29]
    T.R. Morris and Z.H. Slade, Solutions to the reconstruction problem in asymptotic safety, JHEP 11 (2015) 094 [arXiv:1507.08657] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    R. Floreanini and R. Percacci, The Heat kernel and the average effective potential, Phys. Lett. B 356 (1995) 205 [hep-th/9505172] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Bonanno and M. Reuter, Proper-time regulators and RG flow in QEG, AIP Conf. Proc. 751 (2005) 162 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Bonanno and M. Reuter, Proper time flow equation for gravity, JHEP 02 (2005) 035 [hep-th/0410191] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971 [hep-th/9605030] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    B.S. DeWitt, The global approach to quantum field theory. Vol. 1, 2, Int. Ser. Monogr. Phys. 114 (2003) 1 [INSPIRE].
  35. [35]
    P.M. Lavrov and I.L. Shapiro, On the Functional Renormalization Group approach for Yang-Mills fields, JHEP 06 (2013) 086 [arXiv:1212.2577] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    P.M. Lavrov and B.S. Merzlikin, Loop expansion of the average effective action in the functional renormalization group approach, Phys. Rev. D 92 (2015) 085038 [arXiv:1506.04491] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    E. Witten, Quantum gravity in de Sitter space, in Strings 2001: International Conference, Mumbai, India, 5-10 January 2001 [hep-th/0106109] [INSPIRE].
  38. [38]
    I. Antoniadis and E.T. Tomboulis, Gauge Invariance and Unitarity in Higher Derivative Quantum Gravity, Phys. Rev. D 33 (1986) 2756 [INSPIRE].ADSGoogle Scholar
  39. [39]
    E.T. Tomboulis, Renormalization and unitarity in higher derivative and nonlocal gravity theories, Mod. Phys. Lett. A 30 (2015) 1540005 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    C.M. Bender and P.D. Mannheim, No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model, Phys. Rev. Lett. 100 (2008) 110402 [arXiv:0706.0207] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C.M. Bender and P.D. Mannheim, Giving up the ghost, J. Phys. A 41 (2008) 304018 [arXiv:0807.2607] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  43. [43]
    P.D. Mannheim, Unitarity of loop diagrams for the ghost-like 1/(k 2 − M 12) − 1/(k 2 − M 22) propagator, arXiv:1801.03220 [INSPIRE].
  44. [44]
    R. Percacci and G.P. Vacca, Search of scaling solutions in scalar-tensor gravity, Eur. Phys. J. C 75 (2015) 188 [arXiv:1501.00888] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D.V. Vassilevich, Heat kernel expansion: User’s manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press (2013) [ISBN: 9781139632478].Google Scholar
  47. [47]
    A. Codello, Scaling Solutions in Continuous Dimension, J. Phys. A 45 (2012) 465006 [arXiv:1204.3877] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    V.P. Gusynin, Seeley-gilkey Coefficients for the Fourth Order Operators on a Riemannian Manifold, Nucl. Phys. B 333 (1990) 296 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    N. Ohta and R. Percacci, Higher Derivative Gravity and Asymptotic Safety in Diverse Dimensions, Class. Quant. Grav. 31 (2014) 015024 [arXiv:1308.3398] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    A. Codello, R. Percacci, L. Rachwal and A. Tonero, Computing the Effective Action with the Functional Renormalization Group, Eur. Phys. J. C 76 (2016) 226 [arXiv:1505.03119] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Reuter and F. Saueressig, Functional Renormalization Group Equations, Asymptotic Safety and Quantum Einstein Gravity, in Geometric and topological methods for quantum field theory (2010), pp. 288-329 [arXiv:0708.1317] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of ColoradoBoulderU.S.A.

Personalised recommendations