Saturation model of DIS: an update

Open Access
Regular Article - Theoretical Physics
  • 14 Downloads

Abstract

We present the results of new fits to the recently extracted data on F2 at low x with the GBW saturation model and its modification to cover high values of Q2. We find that the model stands the test of time and gives a good description of the data with slightly modified parameters. All the essential elements of the model, especially the saturation scale, are retained.

Keywords

Deep Inelastic Scattering (Phenomenology) QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I. Abt, A.M. Cooper-Sarkar, B. Foster, V. Myronenko, K. Wichmann and M. Wing, Investigation into the limits of perturbation theory at low Q 2 using HERA deep inelastic scattering data, Phys. Rev. D 96 (2017) 014001 [arXiv:1704.03187] [INSPIRE].ADSGoogle Scholar
  2. [2]
    ZEUS and H1 collaborations, F.D. Aaron et al., Combined Measurement and QCD Analysis of the Inclusive e ± p Scattering Cross Sections at HERA, JHEP 01 (2010) 109 [arXiv:0911.0884] [INSPIRE].
  3. [3]
    ZEUS and H1 collaborations, H. Abramowicz et al., Combination of measurements of inclusive deep inelastic e ± p scattering cross sections and QCD analysis of HERA data, Eur. Phys. J. C 75 (2015) 580 [arXiv:1506.06042] [INSPIRE].
  4. [4]
    V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].Google Scholar
  5. [5]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP 46 (1977)641 [INSPIRE].
  7. [7]
    L.N. Lipatov, Reggeization of the Vector Meson and the Vacuum Singularity in Nonabelian Gauge Theories, Sov. J. Nucl. Phys. 23 (1976) 338 [INSPIRE].Google Scholar
  8. [8]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-reggeon processes in the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443 [INSPIRE].ADSGoogle Scholar
  9. [9]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].Google Scholar
  11. [11]
    L.V. Gribov, E.M. Levin and M.G. Ryskin, Singlet Structure Function at Small x: Unitarization of Gluon Ladders, Nucl. Phys. B 188 (1981) 555 [INSPIRE].
  12. [12]
    L.V. Gribov, E.M. Levin and M.G. Ryskin, Semihard Processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A.H. Mueller and J.-w. Qiu, Gluon Recombination and Shadowing at Small Values of x, Nucl. Phys. B 268 (1986) 427 [INSPIRE].
  14. [14]
    L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].
  15. [15]
    L.D. McLerran and R. Venugopalan, Gluon distribution functions for very large nuclei at small transverse momentum, Phys. Rev. D 49 (1994) 3352 [hep-ph/9311205] [INSPIRE].
  16. [16]
    J. Jalilian-Marian, A. Kovner, L.D. McLerran and H. Weigert, The Intrinsic glue distribution at very small x, Phys. Rev. D 55 (1997) 5414 [hep-ph/9606337] [INSPIRE].
  17. [17]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].
  18. [18]
    E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1., Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].
  19. [19]
    E. Iancu, A. Leonidov and L.D. McLerran, The Renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].
  20. [20]
    E. Iancu and R. Venugopalan, The Color glass condensate and high-energy scattering in QCD, in Quark gluon plasma 3, R.C. Hwa and X.-N. Wang eds., World Scientific, Singapore (2004), pg. 249.Google Scholar
  21. [21]
    H. Weigert, Evolution at small x(bj): The Color glass condensate, Prog. Part. Nucl. Phys. 55 (2005) 461 [hep-ph/0501087] [INSPIRE].
  22. [22]
    I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].
  23. [23]
    Y.V. Kovchegov, Small x F(2) structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
  24. [24]
    Y.V. Kovchegov, Unitarization of the BFKL Pomeron on a nucleus, Phys. Rev. D 61 (2000) 074018 [hep-ph/9905214] [INSPIRE].
  25. [25]
    K.J. Golec-Biernat, L. Motyka and A.M. Stasto, Diffusion into infrared and unitarization of the BFKL Pomeron, Phys. Rev. D 65 (2002) 074037 [hep-ph/0110325] [INSPIRE].
  26. [26]
    K.J. Golec-Biernat and M. Wusthoff, Saturation effects in deep inelastic scattering at low Q 2 and its implications on diffraction, Phys. Rev. D 59 (1998) 014017 [hep-ph/9807513] [INSPIRE].
  27. [27]
    J. Bartels, K.J. Golec-Biernat and H. Kowalski, A modification of the saturation model: DGLAP evolution, Phys. Rev. D 66 (2002) 014001 [hep-ph/0203258] [INSPIRE].
  28. [28]
    K.J. Golec-Biernat and S. Sapeta, Heavy flavour production in DGLAP improved saturation model, Phys. Rev. D 74 (2006) 054032 [hep-ph/0607276] [INSPIRE].
  29. [29]
    E. Iancu, K. Itakura and S. Munier, Saturation and BFKL dynamics in the HERA data at small x, Phys. Lett. B 590 (2004) 199 [hep-ph/0310338] [INSPIRE].
  30. [30]
    H. Kowalski and D. Teaney, An Impact parameter dipole saturation model, Phys. Rev. D 68 (2003) 114005 [hep-ph/0304189] [INSPIRE].
  31. [31]
    A.H. Rezaeian, M. Siddikov, M. Van de Klundert and R. Venugopalan, Analysis of combined HERA data in the Impact-Parameter dependent Saturation model, Phys. Rev. D 87 (2013) 034002 [arXiv:1212.2974] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A.H. Rezaeian and I. Schmidt, Impact-parameter dependent Color Glass Condensate dipole model and new combined HERA data, Phys. Rev. D 88 (2013) 074016 [arXiv:1307.0825] [INSPIRE].
  33. [33]
    J.L. Albacete, N. Armesto, J.G. Milhano and C.A. Salgado, Non-linear QCD meets data: A Global analysis of lepton-proton scattering with running coupling BK evolution, Phys. Rev. D 80 (2009) 034031 [arXiv:0902.1112] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.L. Albacete, N. Armesto, J.G. Milhano, P. Quiroga-Arias and C.A. Salgado, AAMQS: A non-linear QCD analysis of new HERA data at small-x including heavy quarks, Eur. Phys. J. C 71 (2011) 1705 [arXiv:1012.4408] [INSPIRE].
  35. [35]
    T. Lappi and H. Mäntysaari, Single inclusive particle production at high energy from HERA data to proton-nucleus collisions, Phys. Rev. D 88 (2013) 114020 [arXiv:1309.6963] [INSPIRE].ADSGoogle Scholar
  36. [36]
    E. Iancu, J.D. Madrigal, A.H. Mueller, G. Soyez and D.N. Triantafyllopoulos, Collinearly-improved BK evolution meets the HERA data, Phys. Lett. B 750 (2015) 643 [arXiv:1507.03651] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    J.L. Albacete, J.G. Milhano, P. Quiroga-Arias and J. Rojo, Linear vs Non-Linear QCD Evolution: From HERA Data to LHC Phenomenology, Eur. Phys. J. C 72 (2012) 2131 [arXiv:1203.1043] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R.D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo and L. Rottoli, Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data, arXiv:1710.05935 [INSPIRE].
  39. [39]
    C. Ewerz, A. von Manteuffel and O. Nachtmann, On the Range of Validity of the Dipole Picture, Phys. Rev. D 77 (2008) 074022 [arXiv:0708.3455] [INSPIRE].
  40. [40]
    C. Ewerz, A. von Manteuffel and O. Nachtmann, On the Energy Dependence of the Dipole-Proton Cross Section in Deep Inelastic Scattering, JHEP 03 (2011) 062 [arXiv:1101.0288] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    J.D. Bjorken, J.B. Kogut and D.E. Soper, Quantum Electrodynamics at Infinite Momentum: Scattering from an External Field, Phys. Rev. D 3 (1971) 1382 [INSPIRE].ADSGoogle Scholar
  42. [42]
    A.M. Stasto, K.J. Golec-Biernat and J. Kwiecinski, Geometric scaling for the total γp cross-section in the low x region, Phys. Rev. Lett. 86 (2001) 596 [hep-ph/0007192] [INSPIRE].
  43. [43]
    F. James and M. Roos, Minuit: A System for Function Minimization and Analysis of the Parameter Errors and Correlations, Comput. Phys. Commun. 10 (1975) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    F. James, MINUIT Function Minimization and Error Analysis: Reference Manual Version 94.1, CERN-D-506 (1994).Google Scholar
  45. [45]
    L. Frankfurt, A. Radyushkin and M. Strikman, Interaction of small size wave packet with hadron target, Phys. Rev. D 55 (1997) 98 [hep-ph/9610274] [INSPIRE].
  46. [46]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
  47. [47]
    H1 collaboration, F.D. Aaron et al., Measurement of the Charm and Beauty Structure Functions using the H1 Vertex Detector at HERA, Eur. Phys. J. C 65 (2010) 89 [arXiv:0907.2643] [INSPIRE].
  48. [48]
    ZEUS and H1 collaborations, H. Abramowicz et al., Combination and QCD Analysis of Charm Production Cross Section Measurements in Deep-Inelastic ep Scattering at HERA, Eur. Phys. J. C 73 (2013) 2311 [arXiv:1211.1182] [INSPIRE].
  49. [49]
    H1 collaboration, V. Andreev et al., Measurement of inclusive ep cross sections at high Q 2 at \( \sqrt{s}=225 \) and 252GeV and of the longitudinal proton structure function F L at HERA, Eur. Phys. J. C 74 (2014) 2814 [arXiv:1312.4821] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Institute of Nuclear PhysicsPolish Academy of SciencesCracowPoland
  2. 2.Faculty of Mathematics and Natural SciencesUniversity of RzeszówRzeszówPoland

Personalised recommendations