Can an unbroken flavour symmetry provide an approximate description of lepton masses and mixing?

Open Access
Regular Article - Theoretical Physics


We provide a complete answer to the following question: what are the flavour groups and representations providing, in the symmetric limit, an approximate description of lepton masses and mixings? We assume that neutrino masses are described by the Weinberg operator. We show that the pattern of lepton masses and mixings only depends on the dimension, type (real, pseudoreal, complex), and equivalence of the irreducible components of the flavour representation, and we find only six viable cases. In all cases the neutrinos are either anarchical or have an inverted hierarchical spectrum. In the context of SU(5) unification, only the anarchical option is allowed. Therefore, if the hint of a normal hierarchical spectrum were confirmed, we would conclude (under the above assumption) that symmetry breaking effects must play a leading order role in the understanding of neutrino flavour observables. In order to obtain the above results, we develop a simple algorithm to determine the form of the lepton masses and mixings directly from the structure of the decomposition of the flavour representation in irreducible components, without the need to specify the form of the lepton mass matrices.


Beyond Standard Model Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J. Bijnens and C. Wetterich, Fermion masses from symmetry, Nucl. Phys. B 283 (1987) 237 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Leurer, Y. Nir and N. Seiberg, Mass matrix models, Nucl. Phys. B 398 (1993) 319 [hep-ph/9212278] [INSPIRE].
  4. [4]
    M. Dine, R.G. Leigh and A. Kagan, Flavor symmetries and the problem of squark degeneracy, Phys. Rev. D 48 (1993) 4269 [hep-ph/9304299] [INSPIRE].
  5. [5]
    L.E. Ibáñez and G.G. Ross, Fermion masses and mixing angles from gauge symmetries, Phys. Lett. B 332 (1994) 100 [hep-ph/9403338] [INSPIRE].
  6. [6]
    A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B 466 (1996) 3 [hep-ph/9507462] [INSPIRE].
  7. [7]
    R. Barbieri, G.R. Dvali and L.J. Hall, Predictions from a U(2) flavor symmetry in supersymmetric theories, Phys. Lett. B 377 (1996) 76 [hep-ph/9512388] [INSPIRE].
  8. [8]
    C.D. Carone, L.J. Hall and H. Murayama, (S 3)3 flavor symmetry and pK 0 e +, Phys. Rev. D 53 (1996) 6282 [hep-ph/9512399] [INSPIRE].
  9. [9]
    E. Dudas, C. Grojean, S. Pokorski and C.A. Savoy, Abelian flavor symmetries in supersymmetric models, Nucl. Phys. B 481 (1996) 85 [hep-ph/9606383] [INSPIRE].
  10. [10]
    R. Barbieri, L.J. Hall, S. Raby and A. Romanino, Unified theories with U(2) flavor symmetry, Nucl. Phys. B 493 (1997) 3 [hep-ph/9610449] [INSPIRE].
  11. [11]
    R. Barbieri, L.J. Hall and A. Romanino, Consequences of a U(2) flavor symmetry, Phys. Lett. B 401 (1997) 47 [hep-ph/9702315] [INSPIRE].
  12. [12]
    C.D. Carone and L.J. Hall, Neutrino physics from a U(2) flavor symmetry, Phys. Rev. D 56 (1997) 4198 [hep-ph/9702430] [INSPIRE].
  13. [13]
    N. Irges, S. Lavignac and P. Ramond, Predictions from an anomalous U(1) model of Yukawa hierarchies, Phys. Rev. D 58 (1998) 035003 [hep-ph/9802334] [INSPIRE].
  14. [14]
    J.K. Elwood, N. Irges and P. Ramond, Family symmetry and neutrino mixing, Phys. Rev. Lett. 81 (1998) 5064 [hep-ph/9807228] [INSPIRE].
  15. [15]
    L. Ferretti, S.F. King and A. Romanino, Flavour from accidental symmetries, JHEP 11 (2006) 078 [hep-ph/0609047] [INSPIRE].
  16. [16]
    P. Binetruy, S. Lavignac and P. Ramond, Yukawa textures with an anomalous horizontal Abelian symmetry, Nucl. Phys. B 477 (1996) 353 [hep-ph/9601243] [INSPIRE].
  17. [17]
    P. Binetruy, S. Lavignac, S.T. Petcov and P. Ramond, Quasidegenerate neutrinos from an Abelian family symmetry, Nucl. Phys. B 496 (1997) 3 [hep-ph/9610481] [INSPIRE].
  18. [18]
    Y. Grossman, Y. Nir and Y. Shadmi, Large mixing and large hierarchy between neutrinos with Abelian flavor symmetries, JHEP 10 (1998) 007 [hep-ph/9808355] [INSPIRE].
  19. [19]
    G. Altarelli and F. Feruglio, Theoretical models of neutrino masses and mixings, Springer Tracts Mod. Phys. 190 (2003) 169 [hep-ph/0206077] [INSPIRE].
  20. [20]
    F. Simpson, R. Jimenez, C. Pena-Garay and L. Verde, Strong Bayesian evidence for the normal neutrino hierarchy, JCAP 06 (2017) 029 [arXiv:1703.03425] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri and A. Palazzo, Global constraints on absolute neutrino masses and their ordering, Phys. Rev. D 95 (2017) 096014 [arXiv:1703.04471] [INSPIRE].ADSGoogle Scholar
  22. [22]
    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2017, arXiv:1708.01186 [INSPIRE].
  23. [23]
    F. Capozzi, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Neutrino masses and mixings: status of known and unknown 3ν parameters, Nucl. Phys. B 908 (2016) 218 [arXiv:1601.07777] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  24. [24]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T2K collaboration, K. Abe et al., Combined analysis of neutrino and antineutrino oscillations at T2K, Phys. Rev. Lett. 118 (2017) 151801 [arXiv:1701.00432] [INSPIRE].
  26. [26]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    V. Domcke and A. Romanino, Stable lepton mass matrices, JHEP 06 (2016) 031 [arXiv:1604.08879] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    L.J. Hall, H. Murayama and N. Weiner, Neutrino mass anarchy, Phys. Rev. Lett. 84 (2000) 2572 [hep-ph/9911341] [INSPIRE].
  29. [29]
    N. Haba and H. Murayama, Anarchy and hierarchy, Phys. Rev. D 63 (2001) 053010 [hep-ph/0009174] [INSPIRE].
  30. [30]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [INSPIRE].
  31. [31]
    P.H. Frampton, S.T. Petcov and W. Rodejohann, On deviations from bimaximal neutrino mixing, Nucl. Phys. B 687 (2004) 31 [hep-ph/0401206] [INSPIRE].
  32. [32]
    A. Romanino, Charged lepton contributions to the solar neutrino mixing and θ 13, Phys. Rev. D 70 (2004) 013003 [hep-ph/0402258] [INSPIRE].
  33. [33]
    S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [INSPIRE].
  34. [34]
    S. Antusch and S.F. King, Charged lepton corrections to neutrino mixing angles and CP phases revisited, Phys. Lett. B 631 (2005) 42 [hep-ph/0508044] [INSPIRE].
  35. [35]
    K.A. Hochmuth, S.T. Petcov and W. Rodejohann, U PMNS = U l U ν, Phys. Lett. B 654 (2007) 177 [arXiv:0706.2975] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P.S. Bhupal Dev, R.N. Mohapatra and M. Severson, Neutrino mixings in SO(10) with type II seesaw and θ 13, Phys. Rev. D 84 (2011) 053005 [arXiv:1107.2378] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Dev, S. Gupta and R. Raman Gautam, Parametrizing the lepton mixing matrix in terms of charged lepton corrections, Phys. Lett. B 704 (2011) 527 [arXiv:1107.1125] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D. Marzocca, S.T. Petcov, A. Romanino and M. Spinrath, Sizeable θ 13 from the charged lepton sector in SU(5), (tri-)bimaximal neutrino mixing and Dirac CP-violation, JHEP 11 (2011) 009 [arXiv:1108.0614] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  39. [39]
    G. Altarelli, F. Feruglio and L. Merlo, Tri-bimaximal neutrino mixing and discrete flavour symmetries, Fortsch. Phys. 61 (2013) 507 [arXiv:1205.5133] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  40. [40]
    D. Marzocca, S.T. Petcov, A. Romanino and M.C. Sevilla, Nonzero |U e3| from charged lepton corrections and the atmospheric neutrino mixing angle, JHEP 05 (2013) 073 [arXiv:1302.0423] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Gollu, K.N. Deepthi and R. Mohanta, Charged lepton correction to tribimaximal lepton mixing and its implications to neutrino phenomenology, Mod. Phys. Lett. A 28 (2013) 1350131 [arXiv:1303.3393] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. Marzocca and A. Romanino, Stable fermion mass matrices and the charged lepton contribution to neutrino mixing, JHEP 11 (2014) 159 [arXiv:1409.3760] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S.T. Petcov, On pseudo-Dirac neutrinos, neutrino oscillations and neutrinoless double beta decay, Phys. Lett. B 110 (1982) 245 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R. Barbieri, L.J. Hall, D. Tucker-Smith, A. Strumia and N. Weiner, Oscillations of solar and atmospheric neutrinos, JHEP 12 (1998) 017 [hep-ph/9807235] [INSPIRE].
  45. [45]
    A.S. Joshipura and S.D. Rindani, Vacuum solutions of neutrino anomalies through a softly broken U(1) symmetry, Eur. Phys. J. C 14 (2000) 85 [hep-ph/9811252] [INSPIRE].
  46. [46]
    R.N. Mohapatra, A. Perez-Lorenzana and C.A. de Sousa Pires, Type II seesaw and a gauge model for the bimaximal mixing explanation of neutrino puzzles, Phys. Lett. B 474 (2000) 355 [hep-ph/9911395] [INSPIRE].
  47. [47]
    S.T. Petcov and W. Rodejohann, Flavor symmetry L e -L μ -L τ , atmospheric neutrino mixing and CP-violation in the lepton sector, Phys. Rev. D 71 (2005) 073002 [hep-ph/0409135] [INSPIRE].
  48. [48]
    G. Altarelli and R. Franceschini, Neutrino masses with inverse hierarchy from broken L e -L μ -L τ : a reappraisal, JHEP 03 (2006) 047 [hep-ph/0512202] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.SISSA/ISAS and INFNTriesteItaly
  2. 2.ICTPTriesteItaly

Personalised recommendations