On exact correlation functions of chiral ring operators in 2d \( \mathcal{N}=\left(2,\ 2\right) \) SCFTs via localization

Open Access
Regular Article - Theoretical Physics
  • 35 Downloads

Abstract

We study the extremal correlation functions of (twisted) chiral ring operators via superlocalization in \( \mathcal{N}=\left(2,\ 2\right) \) superconformal field theories (SCFTs) with central charge c ≥ 3, especially for SCFTs with Calabi-Yau geometric phases. We extend the method in arXiv: 1602.05971 with mild modifications, so that it is applicable to disentangle operators mixing on S2 in nilpotent (twisted) chiral rings of 2d SCFTs. With the extended algorithm and technique of localization, we compute exactly the extremal correlators in 2d \( \mathcal{N}=\left(2,\ 2\right) \) (twisted) chiral rings as non-holomorphic functions of marginal parameters of the theories. Especially in the context of Calabi-Yau geometries, we give an explicit geometric interpretation to our algorithm as the Griffiths transversality with projection on the Hodge bundle over Calabi-Yau complex moduli. We also apply the method to compute extremal correlators in Kähler moduli, or say twisted chiral rings, of several interesting Calabi-Yau manifolds. In the case of complete intersections in toric varieties, we provide an alternative formalism for extremal correlators via localization onto Higgs branch. In addition, as a spinoff we find that, from the extremal correlators of the top element in twisted chiral rings, one can extract chiral correlators in A-twisted topological theories.

Keywords

Conformal Field Theory Field Theories in Lower Dimensions Supersymmetric Gauge Theory Supersymmetry and Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Baggio, V. Niarchos and K. Papadodimas, Exact correlation functions in SU(2) \( \mathcal{N}=2 \) superconformal QCD, Phys. Rev. Lett. 113 (2014) 251601 [arXiv:1409.4217] [INSPIRE].
  2. [2]
    M. Baggio, V. Niarchos and K. Papadodimas, tt equations, localization and exact chiral rings in 4d \( \mathcal{N}=2 \) SCFTs, JHEP 02 (2015) 122 [arXiv:1409.4212] [INSPIRE].
  3. [3]
    M. Baggio, V. Niarchos and K. Papadodimas, On exact correlation functions in SU(N) \( \mathcal{N}=2 \) superconformal QCD, JHEP 11 (2015) 198 [arXiv:1508.03077] [INSPIRE].
  4. [4]
    E. Gerchkovitz, J. Gomis, N. Ishtiaque, A. Karasik, Z. Komargodski and S.S. Pufu, Correlation Functions of Coulomb Branch Operators, JHEP 01 (2017) 103 [arXiv:1602.05971] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    K. Papadodimas, Topological Anti-Topological Fusion in Four-Dimensional Superconformal Field Theories, JHEP 08 (2010) 118 [arXiv:0910.4963] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    J. de Boer, J. Manschot, K. Papadodimas and E. Verlinde, The Chiral ring of AdS 3/CF T 2 and the attractor mechanism, JHEP 03 (2009) 030 [arXiv:0809.0507] [INSPIRE].
  8. [8]
    S. Cecotti, Geometry of N = 2 Landau-Ginzburg families, Nucl. Phys. B 355 (1991) 755Google Scholar
  9. [9]
    S. Cecotti and C. Vafa, Topological-anti-topological fusion, Nucl. Phys. B 367 (1991) 359 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    W. Lerche, C. Vafa and N.P. Warner, Chiral Rings in N = 2 Superconformal Theories, Nucl. Phys. B 324 (1989) 427 [INSPIRE].
  11. [11]
    K. Ranganathan, H. Sonoda and B. Zwiebach, Connections on the state space over conformal field theories, Nucl. Phys. B 414 (1994) 405 [hep-th/9304053] [INSPIRE].
  12. [12]
    J. Gomis, Z. Komargodski, H. Ooguri, N. Seiberg and Y. Wang, Shortening Anomalies in Supersymmetric Theories, JHEP 01 (2017) 067 [arXiv:1611.03101] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    E. Gerchkovitz, J. Gomis and Z. Komargodski, Sphere Partition Functions and the Zamolodchikov Metric, JHEP 11 (2014) 001 [arXiv:1405.7271] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    F. Benini and S. Cremonesi, Partition Functions of \( \mathcal{N}=\left(2,\ 2\right) \) Gauge Theories on S 2 and Vortices, Commun. Math. Phys. 334 (2015) 1483 [arXiv:1206.2356] [INSPIRE].
  16. [16]
    N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact Results in D = 2 Supersymmetric Gauge Theories, JHEP 05 (2013) 093 [arXiv:1206.2606] [INSPIRE].
  17. [17]
    J. Gomis, P.-S. Hsin, Z. Komargodski, A. Schwimmer, N. Seiberg and S. Theisen, Anomalies, Conformal Manifolds and Spheres, JHEP 03 (2016) 022 [arXiv:1509.08511] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Work in progress.Google Scholar
  19. [19]
    N. Doroud and J. Gomis, Gauge theory dynamics and Kähler potential for Calabi-Yau complex moduli, JHEP 12 (2013) 099 [arXiv:1309.2305] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Gomis and S. Lee, Exact Kähler Potential from Gauge Theory and Mirror Symmetry, JHEP 04 (2013) 019 [arXiv:1210.6022] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    F. Benini and B. Le Floch, Supersymmetric localization in two dimensions, J. Phys. A 50 (2017) 443003 [arXiv:1608.02955] [INSPIRE].
  22. [22]
    P. Griffiths, On the Periods of Certain Rational Integrals: I, Ann. Math. 90 (1969) 460.Google Scholar
  23. [23]
    B.R. Greene, D.R. Morrison and M.R. Plesser, Mirror manifolds in higher dimension, Commun. Math. Phys. 173 (1995) 559 [hep-th/9402119] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    M. Alim, Lectures on Mirror Symmetry and Topological String Theory, arXiv:1207.0496 [INSPIRE].
  25. [25]
    N.P. Warner, N = 2 supersymmetric integrable models and topological field theories, in Proceedings, Summer School in High-energy physics and cosmology, Trieste, Italy, 15 June - 31 July 1992, pg. 0143 [hep-th/9301088] [INSPIRE].
  26. [26]
    R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, Topological strings in d < 1, Nucl. Phys. B 352 (1991) 59 [INSPIRE].
  27. [27]
    E. Witten, Topological Quantum Field Theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    E. Witten, Topological σ-models, Commun. Math. Phys. 118 (1988) 411 [INSPIRE].
  29. [29]
    E. Witten, On the Structure of the Topological Phase of Two-dimensional Gravity, Nucl. Phys. B 340 (1990) 281 [INSPIRE].
  30. [30]
    G. Tian, Smoothness of the Universal Deformation Space of Compact Calabi-Yau Manifolds and its Peterson-Weil Metric, in Mathematical Aspects of String Theory, S.-T. Yau eds., World Scientific, Singapore (1987).Google Scholar
  31. [31]
    H. Jockers, V. Kumar, J.M. Lapan, D.R. Morrison and M. Romo, Two-Sphere Partition Functions and Gromov-Witten Invariants, Commun. Math. Phys. 325 (2014) 1139 [arXiv:1208.6244] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    Y. Honma and M. Manabe, Exact Kähler Potential for Calabi-Yau Fourfolds, JHEP 05 (2013) 102 [arXiv:1302.3760] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  33. [33]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].
  34. [34]
    S. Shadchin, On F-term contribution to effective action, JHEP 08 (2007) 052 [hep-th/0611278] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge U.K. (2004).Google Scholar
  36. [36]
    H. Jockers, V. Kumar, J.M. Lapan, D.R. Morrison and M. Romo, Nonabelian 2D Gauge Theories for Determinantal Calabi-Yau Varieties, JHEP 11 (2012) 166 [arXiv:1205.3192] [INSPIRE].
  37. [37]
    P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [INSPIRE].
  38. [38]
    C. Closset, S. Cremonesi and D.S. Park, The equivariant A-twist and gauged linear σ-models on the two-sphere, JHEP 06 (2015) 076 [arXiv:1504.06308] [INSPIRE].
  39. [39]
    K. Hori and D. Tong, Aspects of Non-Abelian Gauge Dynamics in Two-Dimensional N = (2, 2) Theories, JHEP 05(2007) 079 [hep-th/0609032] [INSPIRE].
  40. [40]
    J. Halverson, H. Jockers, J.M. Lapan and D.R. Morrison, Perturbative Corrections to Kähler Moduli Spaces, Commun. Math. Phys. 333 (2015) 1563 [arXiv:1308.2157] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    N. Dorey, The BPS spectra of two-dimensional supersymmetric gauge theories with twisted mass terms, JHEP 11 (1998) 005 [hep-th/9806056] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  42. [42]
    A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037 [hep-th/0306150] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP 04 (2004) 066 [hep-th/0403158] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    M. Shifman and A. Yung, NonAbelian string junctions as confined monopoles, Phys. Rev. D 70 (2004) 045004 [hep-th/0403149] [INSPIRE].
  45. [45]
    D.S. Park and J. Song, The Seiberg-Witten Kähler Potential as a Two-Sphere Partition Function, JHEP 01 (2013) 142 [arXiv:1211.0019] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  46. [46]
    P. Koroteev, M. Shifman and A. Yung, Studying Critical String Emerging from Non-Abelian Vortex in Four Dimensions, Phys. Lett. B 759 (2016) 154 [arXiv:1605.01472] [INSPIRE].
  47. [47]
    P. Koroteev, M. Shifman and A. Yung, Non-Abelian Vortex in Four Dimensions as a Critical String on a Conifold, Phys. Rev. D 94 (2016) 065002 [arXiv:1605.08433] [INSPIRE].
  48. [48]
    M. Shifman and A. Yung, Critical Non-Abelian Vortex in Four Dimensions and Little String Theory, Phys. Rev. D 96 (2017) 046009 [arXiv:1704.00825] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations