Constraining composite Higgs models using LHC data

  • Avik Banerjee
  • Gautam Bhattacharyya
  • Nilanjana Kumar
  • Tirtha Sankar Ray
Open Access
Regular Article - Theoretical Physics
  • 45 Downloads

Abstract

We systematically study the modifications in the couplings of the Higgs boson, when identified as a pseudo Nambu-Goldstone boson of a strong sector, in the light of LHC Run 1 and Run 2 data. For the minimal coset SO(5)/SO(4) of the strong sector, we focus on scenarios where the standard model left- and right-handed fermions (specifically, the top and bottom quarks) are either in 5 or in the symmetric 14 representation of SO(5). Going beyond the minimal 5 L 5 R representation, to what we call here the ‘extended’ models, we observe that it is possible to construct more than one invariant in the Yukawa sector. In such models, the Yukawa couplings of the 125 GeV Higgs boson undergo nontrivial modifications. The pattern of such modifications can be encoded in a generic phenomenological Lagrangian which applies to a wide class of such models. We show that the presence of more than one Yukawa invariant allows the gauge and Yukawa coupling modifiers to be decorrelated in the ‘extended’ models, and this decorrelation leads to a relaxation of the bound on the compositeness scale (f ≥ 640 GeV at 95% CL, as compared to f ≥ 1 TeV for the minimal 5 L 5 R representation model). We also study the Yukawa coupling modifications in the context of the next-to-minimal strong sector coset SO(6)/SO(5) for fermion-embedding up to representations of dimension 20. While quantifying our observations, we have performed a detailed χ2 fit using the ATLAS and CMS combined Run 1 and available Run 2 data.

Keywords

Beyond Standard Model Higgs Physics Technicolor and Composite Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, in Physics of the large and the small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, U.S.A., 1–26 June 2009, pp. 235–306 (2011) DOI: https://doi.org/10.1142/9789814327183_0005 [arXiv:1005.4269] [INSPIRE].
  4. [4]
    G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) pp.1 [arXiv:1506.01961] [INSPIRE].
  5. [5]
    C. Csáki and P. Tanedo, Beyond the Standard Model, in Proceedings, 2013 European School of High-Energy Physics (ESHEP 2013), Paradfurdo, Hungary, June 5–18, 2013, pp. 169–268 (2015) DOI: https://doi.org/10.5170/CERN-2015-004.169 [arXiv:1602.04228] [INSPIRE].
  6. [6]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].
  7. [7]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].
  8. [8]
    C. Csáki, M. Geller and O. Telem, Tree-level Quartic for a Holographic Composite Higgs, arXiv:1710.08921 [INSPIRE].
  9. [9]
    D. Espriu and A. Katanaeva, Holographic description of SO(5) → SO(4) composite Higgs model, arXiv:1706.02651 [INSPIRE].
  10. [10]
    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A First Top Partner Hunter’s Guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    A. Thamm, R. Torre and A. Wulzer, Future tests of Higgs compositeness: direct vs indirect, JHEP 07 (2015) 100 [arXiv:1502.01701] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Azatov, D. Chowdhury, D. Ghosh and T.S. Ray, Same sign di-lepton candles of the composite gluons, JHEP 08 (2015) 140 [arXiv:1505.01506] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    J.P. Araque, N.F. Castro and J. Santiago, Interpretation of Vector-like Quark Searches: Heavy Gluons in Composite Higgs Models, JHEP 11 (2015) 120 [arXiv:1507.05628] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    ATLAS collaboration, Search for pair production of vector-like top quarks in events with one lepton, jets and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, JHEP 08 (2017) 052 [arXiv:1705.10751] [INSPIRE].
  15. [15]
    CMS collaboration, Search for top quark partners with charge 5/3 in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 08 (2017) 073 [arXiv:1705.10967] [INSPIRE].
  16. [16]
    CMS collaboration, Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 11 (2017) 085 [arXiv:1706.03408] [INSPIRE].
  17. [17]
    M. Chala, Direct bounds on heavy toplike quarks with standard and exotic decays, Phys. Rev. D 96 (2017) 015028 [arXiv:1705.03013] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Yepes and A. Zerwekh, Top partner-resonance interplay in a composite Higgs framework, arXiv:1711.10523 [INSPIRE].
  19. [19]
    D. Pappadopulo, A. Thamm and R. Torre, A minimally tuned composite Higgs model from an extra dimension, JHEP 07 (2013) 058 [arXiv:1303.3062] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Croon, B.M. Dillon, S.J. Huber and V. Sanz, Exploring holographic Composite Higgs models, JHEP 07 (2016) 072 [arXiv:1510.08482] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Banerjee, G. Bhattacharyya and T.S. Ray, Improving Fine-tuning in Composite Higgs Models, Phys. Rev. D 96 (2017) 035040 [arXiv:1703.08011] [INSPIRE].ADSGoogle Scholar
  22. [22]
    C. Csáki, T. Ma and J. Shu, Trigonometric Parity for the Composite Higgs, arXiv:1709.08636 [INSPIRE].
  23. [23]
    Z. Chacko, H.-S. Goh and R. Harnik, The Twin Higgs: Natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].
  24. [24]
    K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  25. [25]
    G. Panico and A. Wulzer, The Discrete Composite Higgs Model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light Top Partners for a Light Composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D. Marzocca, M. Serone and J. Shu, General Composite Higgs Models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Pomarol and F. Riva, The Composite Higgs and Light Resonance Connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Carena, L. Da Rold and E. Pontón, Minimal Composite Higgs Models at the LHC, JHEP 06 (2014) 159 [arXiv:1402.2987] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the Tuning and the Mass of the Composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Montull, F. Riva, E. Salvioni and R. Torre, Higgs Couplings in Composite Models, Phys. Rev. D 88 (2013) 095006 [arXiv:1308.0559] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Carmona and F. Goertz, A naturally light Higgs without light Top Partners, JHEP 05 (2015) 002 [arXiv:1410.8555] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Kanemura, K. Kaneta, N. Machida, S. Odori and T. Shindou, Single and double production of the Higgs boson at hadron and lepton colliders in minimal composite Higgs models, Phys. Rev. D 94 (2016) 015028 [arXiv:1603.05588] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M.B. Gavela, K. Kanshin, P.A.N. Machado and S. Saa, The linear-non-linear frontier for the Goldstone Higgs, Eur. Phys. J. C 76 (2016) 690 [arXiv:1610.08083] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    D. Liu, I. Low and C.E.M. Wagner, Modification of Higgs Couplings in Minimal Composite Models, Phys. Rev. D 96 (2017) 035013 [arXiv:1703.07791] [INSPIRE].ADSGoogle Scholar
  36. [36]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Redi and A. Tesi, Implications of a Light Higgs in Composite Models, JHEP 10 (2012) 166 [arXiv:1205.0232] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Barnard, T. Gherghetta and T.S. Ray, UV descriptions of composite Higgs models without elementary scalars, JHEP 02 (2014) 002 [arXiv:1311.6562] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Serra, Beyond the Minimal Top Partner Decay, JHEP 09 (2015) 176 [arXiv:1506.05110] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Low, A. Tesi and L.-T. Wang, A pseudoscalar decaying to photon pairs in the early LHC Run 2 data, JHEP 03 (2016) 108 [arXiv:1512.05328] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    H. Cai, T. Flacke and M. Lespinasse, A composite scalar hint from di-boson resonances?, arXiv:1512.04508 [INSPIRE].
  42. [42]
    A. Arbey, G. Cacciapaglia, H. Cai, A. Deandrea, S. Le Corre and F. Sannino, Fundamental Composite Electroweak Dynamics: Status at the LHC, Phys. Rev. D 95 (2017) 015028 [arXiv:1502.04718] [INSPIRE].ADSGoogle Scholar
  43. [43]
    C. Niehoff, P. Stangl and D.M. Straub, Electroweak symmetry breaking and collider signatures in the next-to-minimal composite Higgs model, JHEP 04 (2017) 117 [arXiv:1611.09356] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    V. Sanz and J. Setford, Composite Higgs models after Run2, arXiv:1703.10190 [INSPIRE].
  45. [45]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  46. [46]
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    M. Hashimoto, Revisiting vectorlike quark models with enhanced top Yukawa coupling, Phys. Rev. D 96 (2017) 035020 [arXiv:1704.02615] [INSPIRE].ADSGoogle Scholar
  48. [48]
    S. Jana and S. Nandi, New Physics Scale from Higgs Observables with Effective Dimension-6 Operators, arXiv:1710.00619 [INSPIRE].
  49. [49]
    G. Cacciapaglia, A. Deandrea, G. Drieu La Rochelle and J.-B. Flament, Higgs couplings beyond the Standard Model, JHEP 03 (2013) 029 [arXiv:1210.8120] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Azatov, R. Contino, A. Di Iura and J. Galloway, New Prospects for Higgs Compositeness in h, Phys. Rev. D 88 (2013) 075019 [arXiv:1308.2676] [INSPIRE].ADSGoogle Scholar
  52. [52]
    S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  53. [53]
    ATLAS, CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  54. [54]
    ATLAS collaboration, Measurements of the Higgs boson production cross section via Vector Boson Fusion and associated W H production in the WW *ℓνℓν decay mode with the ATLAS detector at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-112 (2016).
  55. [55]
    ATLAS collaboration, Measurements of Higgs boson properties in the diphoton decay channel with 36.1 fb −1 pp collision data at the center-of-mass energy of 13 TeV with the ATLAS detector, ATLAS-CONF-2017-045 (2017).
  56. [56]
    ATLAS collaboration, Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector, ATLAS-CONF-2017-077 (2017).
  57. [57]
    ATLAS collaboration, Measurement of the Higgs boson coupling properties in the HZZ * → 4ℓ decay channel at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2017-043 (2017).
  58. [58]
    ATLAS collaboration, Evidence for the \( H\to b\overline{b} \) decay with the ATLAS detector, JHEP 12 (2017) 024 [arXiv:1708.03299] [INSPIRE].
  59. [59]
    ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with top quarks and decaying into a \( b\overline{b} \) pair in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2017-076 (2017).
  60. [60]
    CMS collaboration, Higgs to WW measurements with 15.2 fb −1 of 13 TeV proton-proton collisions, CMS-PAS-HIG-16-021.
  61. [61]
    CMS collaboration, Measurements of properties of the Higgs boson in the diphoton decay channel with the full 2016 data set, CMS-PAS-HIG-16-040.
  62. [62]
    CMS collaboration, Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \( \sqrt{s}=13 \) TeV, JHEP 11 (2017) 047 [arXiv:1706.09936] [INSPIRE].
  63. [63]
    CMS collaboration, Observation of the Higgs boson decay to a pair of τ leptons with the CMS detector, Phys. Lett. B 779 (2018) 283 [arXiv:1708.00373] [INSPIRE].
  64. [64]
    CMS collaboration, Evidence for the Higgs boson decay to a bottom quark-antiquark pair, arXiv:1709.07497 [INSPIRE].
  65. [65]
    CMS collaboration, Search for the associated production of a Higgs boson with a top quark pair in final states with a τ lepton at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-003.
  66. [66]
    CMS collaboration, Search for Higgs boson production in association with top quarks in multilepton final states at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-004.
  67. [67]
    A. Azatov and J. Galloway, Light Custodians and Higgs Physics in Composite Models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Frigerio, J. Serra and A. Varagnolo, Composite GUTs: models and expectations at the LHC, JHEP 06 (2011) 029 [arXiv:1103.2997] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J. Barnard, T. Gherghetta, T.S. Ray and A. Spray, The Unnatural Composite Higgs, JHEP 01 (2015) 067 [arXiv:1409.7391] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite Scalar Dark Matter, JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    D. Marzocca and A. Urbano, Composite Dark Matter and LHC Interplay, JHEP 07 (2014) 107 [arXiv:1404.7419] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    N. Fonseca, R. Zukanovich Funchal, A. Lessa and L. Lopez-Honorez, Dark Matter Constraints on Composite Higgs Models, JHEP 06 (2015) 154 [arXiv:1501.05957] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    M. Kim, S.J. Lee and A. Parolini, WIMP Dark Matter in Composite Higgs Models and the Dilaton Portal, arXiv:1602.05590 [INSPIRE].
  74. [74]
    J. Ellis and T. You, Global Analysis of Experimental Constraints on a Possible Higgs-Like Particle with Mass 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    M. Chala, G. Durieux, C. Grojean, L. de Lima and O. Matsedonskyi, Minimally extended SILH, JHEP 06 (2017) 088 [arXiv:1703.10624] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Saha Institute of Nuclear Physics, HBNIKolkataIndia
  2. 2.Department of Physics and Centre for Theoretical StudiesIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations