Anomalous dimensions in the WF O(N) model with a monodromy line defect

  • Alexander Söderberg
Open Access
Regular Article - Theoretical Physics


Implications of inserting a conformal, monodromy line defect in three dimensional O(N) models are studied. We consider then the WF O(N) model, and study the two-point Green’s function for bulk-local operators found from both the bulk-defect expansion and Feynman diagrams. This yields the anomalous dimensions for bulk- and defect-local primaries as well as one of the OPE coefficients as ϵ-expansions to the first loop order. As a check on our results, we study the (ϕk)2ϕj operator both using the bulk-defect expansion as well as the equations of motion.


Conformal Field Theory Global Symmetries Spontaneous Symmetry Breaking 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L.F. Alday, Large spin perturbation theory for conformal field theories, Phys. Rev. Lett. 119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    L.F. Alday, Solving CFTs with weakly broken higher spin symmetry, JHEP 10 (2017) 161 [arXiv:1612.00696] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Y. Hikida, The masses of higher spin fields on AdS 4 and conformal perturbation theory, Phys. Rev. D 94 (2016) 026004 [arXiv:1601.01784] [INSPIRE].ADSGoogle Scholar
  9. [9]
    P. Banerjee, S. Datta and R. Sinha, Higher-point conformal blocks and entanglement entropy in heavy states, JHEP 05 (2016) 127 [arXiv:1601.06794] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    V. Bashmakov, M. Bertolini, L. Di Pietro and H. Raj, Scalar multiplet recombination at large N and holography, JHEP 05 (2016) 183 [arXiv:1603.00387] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    L.F. Alday and A. Bissi, Unitarity and positivity constraints for CFT at large central charge, JHEP 07 (2017) 044 [arXiv:1606.09593] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A.N. Manashov and E.D. Skvortsov, Higher-spin currents in the Gross-Neveu model at 1/n 2, JHEP 01 (2017) 132 [arXiv:1610.06938] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    D. Mazac, Analytic bounds and emergence of AdS 2 physics from the conformal bootstrap, JHEP 04 (2017) 146 [arXiv:1611.10060] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    P. Liendo, Revisiting the dilatation operator of the Wilson-Fisher fixed point, Nucl. Phys. B 920 (2017) 368 [arXiv:1701.04830] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    C. Behan, L. Rastelli, S. Rychkov and B. Zan, Long-range critical exponents near the short-range crossover, Phys. Rev. Lett. 118 (2017) 241601 [arXiv:1703.03430] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Codello, M. Safari, G.P. Vacca and O. Zanusso, Leading CFT constraints on multi-critical models in d > 2, JHEP 04 (2017) 127 [arXiv:1703.04830] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    C. Behan, L. Rastelli, S. Rychkov and B. Zan, A scaling theory for the long-range to short-range crossover and an infrared duality, J. Phys. A 50 (2017) 354002 [arXiv:1703.05325] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  18. [18]
    G. Costagliola, Operator product expansion coefficients of the 3D Ising model with a trapping potential, Phys. Rev. D 93 (2016) 066008 [arXiv:1511.02921] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    S.M. Chester, M. Mezei, S.S. Pufu and I. Yaakov, Monopole operators from the 4 − ϵ expansion, JHEP 12 (2016) 015 [arXiv:1511.07108] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Hogervorst, S. Rychkov and B.C. van Rees, Unitarity violation at the Wilson-Fisher fixed point in 4 − ϵ dimensions, Phys. Rev. D 93 (2016) 125025 [arXiv:1512.00013] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    Z. Komargodski and D. Simmons-Duffin, The random-bond Ising model in 2.01 and 3 dimensions, J. Phys. A 50 (2017) 154001 [arXiv:1603.04444] [INSPIRE].
  22. [22]
    S. El-Showk and M.F. Paulos, Extremal bootstrapping: go with the flow, arXiv:1605.08087 [INSPIRE].
  23. [23]
    K. Sen and A. Sinha, On critical exponents without Feynman diagrams, J. Phys. A 49 (2016) 445401 [arXiv:1510.07770] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    E.D. Skvortsov, On (un)broken higher-spin symmetry in vector models, in Proceedings, International Workshop on Higher Spin Gauge Theories, Singapore, 4–6 November 2015, World Scientific, Singapore, (2017), pg. 103 [arXiv:1512.05994] [INSPIRE].
  25. [25]
    P. Dey, A. Kaviraj and K. Sen, More on analytic bootstrap for O(N) models, JHEP 06 (2016) 136 [arXiv:1602.04928] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Z. Li and N. Su, Bootstrapping mixed correlators in the five dimensional critical O(N) models, JHEP 04 (2017) 098 [arXiv:1607.07077] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    V. Bashmakov, M. Bertolini and H. Raj, Broken current anomalous dimensions, conformal manifolds and renormalization group flows, Phys. Rev. D 95 (2017) 066011 [arXiv:1609.09820] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S. Giombi, V. Gurucharan, V. Kirilin, S. Prakash and E. Skvortsov, On the higher-spin spectrum in large N Chern-Simons vector models, JHEP 01 (2017) 058 [arXiv:1610.08472] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    P. Dey, A. Kaviraj and A. Sinha, Mellin space bootstrap for global symmetry, JHEP 07 (2017) 019 [arXiv:1612.05032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    S. Giombi, V. Kirilin and E. Skvortsov, Notes on spinning operators in fermionic CFT, JHEP 05 (2017) 041 [arXiv:1701.06997] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    F. Gliozzi, A.L. Guerrieri, A.C. Petkou and C. Wen, The analytic structure of conformal blocks and the generalized Wilson-Fisher fixed points, JHEP 04 (2017) 056 [arXiv:1702.03938] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  33. [33]
    A. Gadde, Conformal constraints on defects, arXiv:1602.06354 [INSPIRE].
  34. [34]
    S. Balakrishnan, S. Dutta and T. Faulkner, Gravitational dual of the Rényi twist displacement operator, Phys. Rev. D 96 (2017) 046019 [arXiv:1607.06155] [INSPIRE].ADSGoogle Scholar
  35. [35]
    P. Liendo and C. Meneghelli, Bootstrap equations for N = 4 SYM with defects, JHEP 01 (2017) 122 [arXiv:1608.05126] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    M. Hogervorst and B.C. van Rees, Crossing symmetry in alpha space, JHEP 11 (2017) 193 [arXiv:1702.08471] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    P. Liendo, L. Rastelli and B.C. van Rees, The bootstrap program for boundary CFT d, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    M. Billò, M. Caselle, D. Gaiotto, F. Gliozzi, M. Meineri and R. Pellegrini, Line defects in the 3d Ising model, JHEP 07 (2013) 055 [arXiv:1304.4110] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and interface CFTs from the conformal bootstrap, JHEP 05 (2015) 036 [arXiv:1502.07217] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    F. Gliozzi, Truncatable bootstrap equations in algebraic form and critical surface exponents, JHEP 10 (2016) 037 [arXiv:1605.04175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    O. Aharony, O. DeWolfe, D.Z. Freedman and A. Karch, Defect conformal field theory and locally localized gravity, JHEP 07 (2003) 030 [hep-th/0303249] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    J. Long, On co-dimension two defect operators, arXiv:1611.02485 [INSPIRE].
  43. [43]
    D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP 03 (2014) 100 [arXiv:1310.5078] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Rychkov and Z.M. Tan, The ϵ-expansion from conformal field theory, J. Phys. A 48 (2015) 29FT01 [arXiv:1505.00963] [INSPIRE].
  45. [45]
    P. Basu and C. Krishnan, ϵ-expansions near three dimensions from conformal field theory, JHEP 11 (2015) 040 [arXiv:1506.06616] [INSPIRE].
  46. [46]
    K. Nii, Classical equation of motion and anomalous dimensions at leading order, JHEP 07 (2016) 107 [arXiv:1605.08868] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    K. Roumpedakis, Leading order anomalous dimensions at the Wilson-Fisher fixed point from CFT, JHEP 07 (2017) 109 [arXiv:1612.08115] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    S. Ghosh, R.K. Gupta, K. Jaswin and A.A. Nizami, ϵ-expansion in the Gross-Neveu model from conformal field theory, JHEP 03 (2016) 174 [arXiv:1510.04887] [INSPIRE].
  49. [49]
    A. Raju, ϵ-expansion in the Gross-Neveu CFT, JHEP 10 (2016) 097 [arXiv:1510.05287] [INSPIRE].
  50. [50]
    S. Giombi and V. Kirilin, Anomalous dimensions in CFT with weakly broken higher spin symmetry, JHEP 11 (2016) 068 [arXiv:1601.01310] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal bootstrap in Mellin space, Phys. Rev. Lett. 118 (2017) 081601 [arXiv:1609.00572] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal bootstrap, JHEP 05 (2017) 027 [arXiv:1611.08407] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    C. Hasegawa and Yu. Nakayama, ϵ-expansion in critical ϕ 3 -theory on real projective space from conformal field theory, Mod. Phys. Lett. A 32 (2017) 1750045 [arXiv:1611.06373] [INSPIRE].
  54. [54]
    F. Gliozzi, A. Guerrieri, A.C. Petkou and C. Wen, Generalized Wilson-Fisher critical points from the conformal operator product expansion, Phys. Rev. Lett. 118 (2017) 061601 [arXiv:1611.10344] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Yamaguchi, The ϵ-expansion of the codimension two twist defect from conformal field theory, PTEP 2016 (2016) 091B01 [arXiv:1607.05551] [INSPIRE].
  56. [56]
    D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].
  57. [57]
    H. Weyl, The classical groups their invariants and representations, 2nd revised edition, Princeton University Press, Princeton U.S.A., (1997).Google Scholar
  58. [58]
    L. Fei, S. Giombi and I.R. Klebanov, Critical O(N) models in 6 − ϵ dimensions, Phys. Rev. D 90 (2014) 025018 [arXiv:1404.1094] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations