Advertisement

Non-Abelian, supersymmetric black holes and strings in 5 dimensions

  • Patrick Meessen
  • Tomás Ortín
  • Pedro F. Ramírez
Open Access
Regular Article - Theoretical Physics

Abstract

We construct and study the first supersymmetric black-hole and black-string solutions of non-Abelian-gauged \( \mathcal{N}=1 \) , d = 5 supergravity (\( \mathcal{N}=1 \) , d = 5 Super-Einstein-Yang-Mills theory) with non-trivial SU(2) gauge fields: BPST instantons for black holes and BPS monopoles of different kinds (’t Hooft-Polyakov, Wu-Yang and Protogenov) for black strings and also for certain black holes that are well defined solutions only for very specific values of all the moduli. Instantons, as well as colored monopoles do not contribute to the masses and tensions but do contribute to the entropies.

The construction is based on the characterization of the supersymmetric solutions of gauged \( \mathcal{N}=1 \) , d = 5 supergravity coupled to vector multiplets achieved in ref. [1] which we elaborate upon by finding the rules to construct supersymmetric solutions with one additional isometry, both for the timelike and null classes. These rules automatically connect the timelike and null non-Abelian supersymmetric solutions of \( \mathcal{N}=1 \) , d = 5 SEYM theory with the timelike ones of \( \mathcal{N}=2 \) , d = 4 SEYM theory [2, 3] by dimensional reduction and oxidation. In the timelike-to-timelike case the singular Kronheimer reduction recently studied in ref. [4] plays a crucial role.

Keywords

Black Holes Supergravity Models Black Holes in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Bellorın and T. Ortín, Characterization of all the supersymmetric solutions of gauged N = 1, D = 5 supergravity, JHEP 08 (2007) 096[arXiv:0705.2567] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M. Hübscher, P. Meessen, T. Ortín and S. Vaulà, Supersymmetric N = 2 Einstein-Yang-Mills monopoles and covariant attractors, Phys. Rev. D 78 (2008) 065031 [arXiv:0712.1530] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  3. [3]
    M. Hübscher, P. Meessen, T. Ortín and S. Vaulà, N = 2 Einstein-Yang-Mills’s BPS solutions, JHEP 09 (2008) 099 [arXiv:0806.1477] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    P. Bueno, P. Meessen, T. Ortın and P.F. Ramírez, Resolution of SU(2) monopole singularities by oxidation, Phys. Lett. B 746 (2015) 109 [arXiv:1503.01044] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    R. Bartnik and J. Mckinnon, Particle-like solutions of the Einstein Yang-Mills equations, Phys. Rev. Lett. 61 (1988) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    M.S. Volkov and D.V. Galtsov, Non-Abelian Einstein Yang-Mills black holes, JETP Lett. 50 (1989) 346 [Pisma Zh. Eksp. Teor. Fiz. 50 (1989) 312] [INSPIRE].
  7. [7]
    T. Ortín, Gravity and strings, 2nd edition, Cambridge University Press, Cambridge U.K. (2015).Google Scholar
  8. [8]
    J.A. Harvey and J. Liu, Magnetic monopoles in N = 4 supersymmetric low-energy superstring theory, Phys. Lett. B 268 (1991) 40 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    A.H. Chamseddine and M.S. Volkov, Non-Abelian BPS monopoles in N = 4 gauged supergravity, Phys. Rev. Lett. 79 (1997) 3343 [hep-th/9707176] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    A.H. Chamseddine and M.S. Volkov, Non-Abelian solitons in N = 4 gauged supergravity and leading order string theory, Phys. Rev. D 57 (1998) 6242 [hep-th/9711181] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    R. Kallosh and T. Ort´ın, Exact SU(2) × U(1) stringy black holes, Phys. Rev. D 50 (1994) 7123 [hep-th/9409060] [INSPIRE].
  12. [12]
    P. Bueno, P. Meessen, T. Ortín and P.F. Ramirez, N = 2 Einstein-Yang-Mills’ static two-center solutions, JHEP 12 (2014) 093 [arXiv:1410.4160] [INSPIRE].
  13. [13]
    P. Meessen and T. Ortín, Supersymmetric solutions to gauged N = 2 D = 4 SUGRA: the full timelike shebang, Nucl. Phys. B 863 (2012) 65 [arXiv:1204.0493] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    J. Bellorín, Supersymmetric solutions of gauged five-dimensional supergravity with general matter couplings, Class. Quant. Grav. 26 (2009) 195012 [arXiv:0810.0527] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    E.B. Bogomolny, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz. 24 (1976) 861] [INSPIRE].
  16. [16]
    A.P. Protogenov, Exact classical solutions of Yang-Mills sourceless equations, Phys. Lett. B 67 (1977) 62 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    P. Meessen, Supersymmetric coloured/hairy black holes, Phys. Lett. B 665 (2008) 388 [arXiv:0803.0684] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    P.B. Kronheimer, Monopoles and Taub-NUT spaces, M.Sc. dissertation, Oxford University, Oxford U.K. (1995).Google Scholar
  19. [19]
    J. Bellor ın, P. Meessen and T. Ortín, All the supersymmetric solutions of N = 1, d = 5 ungauged supergravity, JHEP 01 (2007) 020 [hep-th/0610196] [INSPIRE].
  20. [20]
    E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren and A. Van Proeyen, N = 2 supergravity in five-dimensions revisited, Class. Quant. Grav. 21 (2004) 3015 [Corrigendum ibid. 23 (2006) 7149] [hep-th/0403045] [INSPIRE].
  21. [21]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five-dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005) 045002 [hep-th/0408122] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    G.W. Gibbons and P.J. Ruback, The hidden symmetries of multicenter metrics, Commun. Math. Phys. 115 (1988) 267 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    G.W. Gibbons and S.W. Hawking, Gravitational multi-instantons, Phys. Lett. B 78 (1978) 430 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Meessen and T. Ortín, N = 2 super-EYM coloured black holes from defective Lax matrices, JHEP 04 (2015) 100 [arXiv:1501.02078] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    C.A.R. Herdeiro, Spinning deformations of the D1-D5 system and a geometric resolution of closed timelike curves, Nucl. Phys. B 665 (2003) 189 [hep-th/0212002] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    J.P. Gauntlett, R.C. Myers and P.K. Townsend, Black holes of D = 5 supergravity, Class. Quant. Grav. 16 (1999) 1 [hep-th/9810204] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    A. de Antonio Martin, T. Ortín and C.S. Shahbazi, The FGK formalism for black p-branes in d dimensions, JHEP 05 (2012) 045 [arXiv:1203.0260] [INSPIRE].
  30. [30]
    P. Meessen, T. Ort´ın, J. Perz and C.S. Shahbazi, Black holes and black strings of N = 2, D = 5 supergravity in the H-FGK formalism,JHEP 09 (2012) 001[arXiv:1204.0507] [INSPIRE].
  31. [31]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge Univ. Pr., Cambridge U.K. (2012).Google Scholar
  32. [32]
    P. Meessen and T. Ortín, The supersymmetric configurations of N = 2, D = 4 supergravity coupled to vector supermultiplets, Nucl. Phys. B 749 (2006) 291 [hep-th/0603099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    M. Hübscher, P. Meessen and T. Ortín, Supersymmetric solutions of N = 2 D = 4 SUGRA: the whole ungauged shebang, Nucl. Phys. B 759 (2006) 228 [hep-th/0606281] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    M.K. Prasad and C.M. Sommerfield, An exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett. 35 (1975) 760 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T.T. Wu and C.-N. Yang, Some solutions of the classical isotopic gauge field equations, in Selected papers 1945-1980, C.N. Yang, pg. 400 also in Properties of matter under unusual conditions, H. Mark and S. Fernbach, New York U.S.A. (1969), pg. 349.Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Patrick Meessen
    • 2
  • Tomás Ortín
    • 1
  • Pedro F. Ramírez
    • 1
  1. 1.Instituto de Física Teórica UAM/CSICMadridSpain
  2. 2.HEP Theory Group, Departamento de FísicaUniversidad de OviedoOviedoSpain

Personalised recommendations