Deformed twistors and higher spin conformal (super-)algebras in four dimensions

  • Karan Govil
  • Murat Günaydin
Open Access
Regular Article - Theoretical Physics


Massless conformal scalar field in d = 4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2, 2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2, 2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS 5. The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS 5 is simply the enveloping algebra of SU(2, 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS 5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS 5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2, 2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS 5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in HS algebras in AdS 4 where the corresponding 3d conformal group \( Sp\left(4,\mathrm{\mathbb{R}}\right) \) admits only two massless representations (minreps), namely the scalar and spinor singletons.


Gauge-gravity correspondence Extended Supersymmetry Space-Time Symmetries 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Joseph, Minimal realizations and spectrum generating algebras, Commun. Math. Phys. 36 (1974) 325 [INSPIRE].CrossRefADSMATHGoogle Scholar
  2. [2]
    D.A. Vogan Jr., Singular unitary representations, in Noncommutative harmonic analysis and Lie groups, Lecture Notes Math. 880 (1980) 506.Google Scholar
  3. [3]
    B. Kostant, The vanishing of scalar curvature and the minimal representation of SO(4, 4), in Operator algebras, unitary representations, enveloping algebras, and invariant theory, Progr. Math. 92 (1990) 85.Google Scholar
  4. [4]
    B. Binegar and R. Zierau, Unitarization of a singular representation of so(p, q), Commun. Math. Phys. 138 (1991) 245.CrossRefADSMATHMathSciNetGoogle Scholar
  5. [5]
    D. Kazhdan and G. Savin, The smallest representation of simply laced groups, in Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), Israel Math. Conf. Proc. 2 (1990) 209.Google Scholar
  6. [6]
    R. Brylinski and B. Kostant, Lagrangian models of minimal representations of E 6 , E 7 and E 8, in Functional analysis on the eve of the 21st century, Progr. Math. 131 (1993) 13.Google Scholar
  7. [7]
    R. Brylinski and B. Kostant, Minimal representations, geometric quantization, and unitarity, Proc. Nat. Acad. Sci. U.S.A. 91 (1994) 6026.CrossRefADSMATHMathSciNetGoogle Scholar
  8. [8]
    B.H. Gross and N.R. Wallach, A distinguished family of unitary representations for the exceptional groups of real rank = 4, in Lie theory and geometry, Progr. Math. 123 (1994) 289.Google Scholar
  9. [9]
    J.-S. Li, Minimal representations & reductive dual pairs, in Representation theory of Lie groups, IAS/Park City Math. Ser. 8 (2000) 293.Google Scholar
  10. [10]
    T. Kobayashi and B. Ørsted, Analysis on the minimal representation of O(p, q). I. Realization via conformal geometry, Adv. Math. 180 (2003) 486.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    T. Kobayashi and B. Ørsted, Analysis on the minimal representation of O(p, q). II. Branching laws, Adv. Math. 180 (2003) 513.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    T. Kobayashi and B. Ørsted, Analysis on the minimal representation of O(p, q). III. Ultrahyperbolic equations on R p−1,q−1, Adv. Math. 180 (2003) 551.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    A.R. Gover and A. Waldron, The so(d+2,2) Minimal Representation and Ambient Tractors: the Conformal Geometry of Momentum Space, Adv. Theor. Math. Phys. 13 (2009) [arXiv:0903.1394] [INSPIRE].
  14. [14]
    D. Kazhdan, B. Pioline and A. Waldron, Minimal representations, spherical vectors and exceptional theta series, Commun. Math. Phys. 226 (2002) 1 [hep-th/0107222] [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  15. [15]
    M. Günaydin, K. Koepsell and H. Nicolai, Conformal and quasiconformal realizations of exceptional Lie groups, Commun. Math. Phys. 221 (2001) 57 [hep-th/0008063] [INSPIRE].CrossRefADSMATHGoogle Scholar
  16. [16]
    M. Günaydin and O. Pavlyk, Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups, JHEP 08 (2005) 101 [hep-th/0506010] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    M. Günaydin, K. Koepsell and H. Nicolai, The Minimal unitary representation of E(8(8)), Adv. Theor. Math. Phys. 5 (2002) 923 [hep-th/0109005] [INSPIRE].Google Scholar
  18. [18]
    M. Günaydin, G. Sierra and P.K. Townsend, Exceptional Supergravity Theories and the MAGIC Square, Phys. Lett. B 133 (1983) 72 [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    M. Günaydin and O. Pavlyk, Minimal unitary realizations of exceptional U-duality groups and their subgroups as quasiconformal groups, JHEP 01 (2005) 019 [hep-th/0409272] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    M. Günaydin and O. Pavlyk, A Unified Approach to the Minimal Unitary Realizations of Noncompact Groups and Supergroups, JHEP 09 (2006) 050 [hep-th/0604077] [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    S. Fernando and M. Günaydin, Minimal unitary representation of SU(2, 2) and its deformations as massless conformal fields and their supersymmetric extensions, J. Math. Phys. 51 (2010) 082301 [arXiv:0908.3624] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    S. Fernando and M. Günaydin, Minimal unitary representation of SO*(8) = SO(6,2) and its SU(2) deformations as massless 6D conformal fields and their supersymmetric extensions, Nucl. Phys. B 841 (2010) 339 [arXiv:1005.3580] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    S. Fernando and M. Günaydin, SU(2) deformations of the minimal unitary representation of OSp(8*|2N) as massless 6D conformal supermultiplets, Nucl. Phys. B 843 (2011) 784 [arXiv:1008.0702] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    M. Günaydin and N. Marcus, The Spectrum of the S 5 Compactification of the Chiral N = 2, D = 10 Supergravity and the Unitary Supermultiplets of U(2, 2/4), Class. Quant. Grav. 2 (1985) L11 [INSPIRE].CrossRefMATHGoogle Scholar
  25. [25]
    M. Günaydin, D. Minic and M. Zagermann, 4 − D doubleton conformal theories, CPT and IIB string on AdS 5 × S 5, Nucl. Phys. B 534 (1998) 96 [Erratum ibid. B 538 (1999) 531] [hep-th/9806042] [INSPIRE].
  26. [26]
    M. Günaydin, D. Minic and M. Zagermann, Novel supermultiplets of SU(2, 2|4) and the AdS 5 /CFT 4 duality, Nucl. Phys. B 544 (1999) 737 [hep-th/9810226] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    M. Günaydin, P. van Nieuwenhuizen and N.P. Warner, General Construction of the Unitary Representations of Anti-de Sitter Superalgebras and the Spectrum of the S 4 Compactification of Eleven-dimensional Supergravity, Nucl. Phys. B 255 (1985) 63 [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    P.A.M. Dirac, A Remarkable representation of the 3 + 2 de Sitter group, J. Math. Phys. 4 (1963) 901 [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  29. [29]
    M. Gunaydin and C. Saclioglu, Oscillator Like Unitary Representations of Noncompact Groups With a Jordan Structure and the Noncompact Groups of Supergravity, Commun. Math. Phys. 87 (1982) 159.CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    I. Bars and M. Gunaydin, Unitary Representations of Noncompact Supergroups, Commun. Math. Phys. 91 (1983) 31.CrossRefADSMATHMathSciNetGoogle Scholar
  31. [31]
    M. Gunaydin, Oscillator-Like Unitary Representations Of Non-Compact Groups And Supergroups And Extended Supergravity Theories, Lect. Notes Phys. 180 (1983) 192.CrossRefADSGoogle Scholar
  32. [32]
    M. Gunaydin, Oscillator-Like Unitary Representations Of Non-Compact Groups And Supergroups And Extended Supergravity Theories, LPTENS-83-5,C82-08-23.1 (1983).Google Scholar
  33. [33]
    C. Fronsdal, The Dirac Supermultiplet, Phys. Rev. D 26 (1982) 1988 [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    M. Günaydin and S.J. Hyun, Unitary Lowest Weight Representations of the Noncompact Supergroup Osp(2n|2m, R), J. Math. Phys. 29 (1988) 2367 [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  35. [35]
    H. Nicolai and E. Sezgin, Singleton Representations of Osp(N ,4), Phys. Lett. B 143 (1984) 389 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  36. [36]
    M. Günaydin and N.P. Warner, Unitary Supermultiplets of OSp(8/4,r) and the Spectrum of the S 7 Compactification of Eleven-dimensional Supergravity, Nucl. Phys. B 272 (1986) 99 [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  38. [38]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMATHMathSciNetGoogle Scholar
  39. [39]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A Semiclassical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    M. Flato and C. Fronsdal, One Massless Particle Equals Two Dirac Singletons: Elementary Particles in a Curved Space. 6., Lett. Math. Phys. 2 (1978) 421 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    M. Flato and C. Fronsdal, Quantum Field Theory of Singletons: The Rac, J. Math. Phys. 22 (1981) 1100 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    M. Flato and C. Fronsdal, Quantum Field Theory of Singletons: The Rac, J. Math. Phys. 22 (1981) 1100 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    E. Angelopoulos, M. Flato, C. Fronsdal and D. Sternheimer, Massless Particles, Conformal Group and de Sitter Universe, Phys. Rev. D 23 (1981) 1278 [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    E.S. Fradkin and M.A. Vasiliev, Cubic Interaction in Extended Theories of Massless Higher Spin Fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  45. [45]
    S.E. Konshtein and M.A. Vasiliev, Massless Representations and Admissibility Condition for Higher Spin Superalgebras, Nucl. Phys. B 312 (1989) 402 [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  47. [47]
    M.A. Vasiliev, Higher spin gauge theories: Star product and AdS space, hep-th/9910096 [INSPIRE].
  48. [48]
    X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].
  49. [49]
    C. Iazeolla, On the Algebraic Structure of Higher-Spin Field Equations and New Exact Solutions, arXiv:0807.0406 [INSPIRE].
  50. [50]
    A. Sagnotti, Notes on Strings and Higher Spins, J. Phys. A 46 (2013) 214006 [arXiv:1112.4285] [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  52. [52]
    E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  53. [53]
    S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  54. [54]
    S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  55. [55]
    S. Giombi and X. Yin, The Higher Spin/Vector Model Duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    M. Gunaydin, Singleton and doubleton supermultiplets of space-time supergroups and infinite spin superalgebras, invited talk in Proceedings of Trieste Conf. on Supermembranes and Physics in (2+1)-Dimensions, Trieste, Italy, Jul 17-21 (1989), ed. by M.J. Duff et al., World Scientific, Singapore (1990), pg. 442-456.Google Scholar
  57. [57]
    E. Fradkin and V.Y. Linetsky, Conformal superalgebras of higher spins, Mod. Phys. Lett. A 4 (1989) 2363.CrossRefADSMathSciNetGoogle Scholar
  58. [58]
    E. Sezgin and P. Sundell, Doubletons and 5 − D higher spin gauge theory, JHEP 09 (2001) 036 [hep-th/0105001] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  59. [59]
    E. Sezgin and P. Sundell, 7 − D bosonic higher spin theory: Symmetry algebra and linearized constraints, Nucl. Phys. B 634 (2002) 120 [hep-th/0112100] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  60. [60]
    E. Sezgin and P. Sundell, Towards massless higher spin extension of D = 5, N = 8 gauged supergravity, JHEP 09 (2001) 025 [hep-th/0107186] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  61. [61]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  62. [62]
    S. Fernando, M. Günaydin and S. Takemae, Supercoherent states of OSp(8*|2N), conformal superfields and the AdS 7 /CFT 6 duality, Nucl. Phys. B 628 (2002) 79 [hep-th/0106161] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP 12 (2004) 046 [hep-th/0404124] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  64. [64]
    N. Boulanger and E.D. Skvortsov, Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime, JHEP 09 (2011) 063 [arXiv:1107.5028] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  65. [65]
    A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].
  66. [66]
    M.G. Eastwood, Higher symmetries of the Laplacian, Annals Math. 161 (2005) 1645 [hep-th/0206233] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  67. [67]
    A. Joseph, The minimal orbit in a simple lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup.(4) 9 (1976) 1.Google Scholar
  68. [68]
    K. Govil and M. Günaydin, Deformed Twistors and Higher Spin Conformal (Super-)Algebras in Six Dimensions, JHEP 07 (2014) 004 [arXiv:1401.6930] [INSPIRE].CrossRefADSGoogle Scholar
  69. [69]
    M. Chiodaroli, M. Günaydin and R. Roiban, Superconformal symmetry and maximal supergravity in various dimensions, JHEP 03 (2012) 093 [arXiv:1108.3085] [INSPIRE].CrossRefADSGoogle Scholar
  70. [70]
    W. Heidenreich, Tensor Products of Positive Energy Representations of SO(3,2) and SO(4,2), J. Math. Phys. 22 (1981) 1566 [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  71. [71]
    M. Eastwood, P. Somberg and V. Soucek, The uniqueness of the joseph ideal for the classical groups, math/0512296.
  72. [72]
    M. Eastwood, The cartan product, Bull. Belgian Math. Soc.-Simon Stevin 11 (2005) 641.MathSciNetGoogle Scholar
  73. [73]
    S. Weinberg, The quantum theory of fields, Cambridge University Press, Cambridge U.K. (1996).CrossRefGoogle Scholar
  74. [74]
    W. Siegel, Fields, hep-th/9912205 [INSPIRE].
  75. [75]
    L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Harmonic R-matrices for Scattering Amplitudes and Spectral Regularization, Phys. Rev. Lett. 110 (2013) 121602 [arXiv:1212.0850] [INSPIRE].CrossRefADSGoogle Scholar
  76. [76]
    M. Eastwood, P. Somberg, and V. Souček, Special tensors in the deformation theory of quadratic algebras for the classical Lie algebras, J. Geom. Phys. 57 (2007) 2539.CrossRefADSMATHMathSciNetGoogle Scholar
  77. [77]
    N. Boulanger, D. Ponomarev, E.D. Skvortsov and M. Taronna, On the uniqueness of higher-spin symmetries in AdS and CFT, Int. J. Mod. Phys. A 28 (2013) 1350162 [arXiv:1305.5180] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  78. [78]
    S.E. Konstein, M.A. Vasiliev and V.N. Zaikin, Conformal higher spin currents in any dimension and AdS/CFT correspondence, JHEP 12 (2000) 018 [hep-th/0010239] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  79. [79]
    M.A. Vasiliev, Cubic interactions of bosonic higher spin gauge fields in AdS 5, Nucl. Phys. B 616 (2001) 106 [Erratum ibid. B 652 (2003) 407] [hep-th/0106200] [INSPIRE].
  80. [80]
    E. Sezgin and P. Sundell, Higher spin N = 8 supergravity, JHEP 11 (1998) 016 [hep-th/9805125] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  81. [81]
    I. Bars, Supergroups and Their Representations, Lectures Appl.Math. 21 (1983) 17.MathSciNetGoogle Scholar
  82. [82]
    I. Bars, B. Morel and H. Ruegg, Kac-dynkin Diagrams and Supertableaux, J. Math. Phys. 24 (1983) 2253 [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  83. [83]
    J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].ADSMathSciNetGoogle Scholar
  84. [84]
    B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  85. [85]
    E. Witten, Spacetime reconstruction, Talk at JHS (2001),
  86. [86]
    I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].ADSMathSciNetGoogle Scholar
  87. [87]
    S. Fedoruk, E. Ivanov and O. Lechtenfeld, New D(2,1,alpha) Mechanics with Spin Variables, JHEP 04 (2010) 129 [arXiv:0912.3508] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  88. [88]
    M. Günaydin, Harmonic Superspace, Minimal Unitary Representations and Quasiconformal Groups, JHEP 05 (2007) 049 [hep-th/0702046] [INSPIRE].CrossRefGoogle Scholar
  89. [89]
    K. Govil and M. Günaydin, Minimal unitary representation of D(2,1:λ) and its SU(2) deformations and D = 1, N = 4 superconformal models, Nucl. Phys. B 869 (2013) 111 [arXiv:1209.0233] [INSPIRE].CrossRefADSGoogle Scholar
  90. [90]
    L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Spectral Parameters for Scattering Amplitudes in N = 4 Super Yang-Mills Theory, JHEP 01 (2014) 094 [arXiv:1308.3494] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  91. [91]
    H. Samtleben and R. Wimmer, N=8 Superspace Constraints for Three-dimensional Gauge Theories, JHEP 02 (2010) 070 [arXiv:0912.1358] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  92. [92]
    M. Günaydin, Unitary Highest Weight Representations of Noncompact Supergroups, J. Math. Phys. 29 (1988) 1275 [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  93. [93]
    C. Iazeolla and P. Sundell, A Fiber Approach to Harmonic Analysis of Unfolded Higher-Spin Field Equations, JHEP 10 (2008) 022 [arXiv:0806.1942] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Institute for Gravitation and the Cosmos, Physics DepartmentPennsylvania State UniversityUniversity ParkU.S.A.
  2. 2.Theory Division, Physics Department, CERNGenevaSwitzerland

Personalised recommendations