Advertisement

Supersymmetry with a pNGB Higgs and partial compositeness

  • David Marzocca
  • Alberto Parolini
  • Marco Serone
Open Access
Article

Abstract

We study the consequences of combining SUSY with a pseudo Nambu-Goldstone boson Higgs coming from an SO(5)/SO(4) coset and “partial compositeness”. In particular, we focus on how electroweak symmetry breaking and the Higgs mass are reproduced in models where the symmetry SO(5) is linearly realized. The global symmetry forbids tree-level contributions to the Higgs potential coming from D-terms, differently from what happens in most of the SUSY little-Higgs constructions. While the stops are generally heavy, light fermion top partners below 1 TeV are predicted. In contrast to what happens in non-SUSY composite Higgs models, they are necessary to reproduce the correct top, rather than Higgs, mass. En passant, we point out that, independently of SUSY, models where t R is fully composite and embedded in the 5 of SO(5) generally predict a too light Higgs.

Keywords

Beyond Standard Model Supersymmetric Standard Model Technicolor and Composite Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    N. Arkani-Hamed et al., The Minimal moose for a little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D.B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light Top Partners for a Light Composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Redi and A. Tesi, Implications of a Light Higgs in Composite Models, JHEP 10 (2012) 166 [arXiv:1205.0232] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Marzocca, M. Serone and J. Shu, General Composite Higgs Models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Pomarol and F. Riva, The Composite Higgs and Light Resonance Connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Barnard, T. Gherghetta and T.S. Ray, UV descriptions of composite Higgs models without elementary scalars, arXiv:1311.6562 [INSPIRE].
  16. [16]
    F. Caracciolo, A. Parolini and M. Serone, UV Completions of Composite Higgs Models with Partial Compositeness, JHEP 02 (2013) 066 [arXiv:1211.7290] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Birkedal, Z. Chacko and M.K. Gaillard, Little supersymmetry and the supersymmetric little hierarchy problem, JHEP 10 (2004) 036 [hep-ph/0404197] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    P.H. Chankowski, A. Falkowski, S. Pokorski and J. Wagner, Electroweak symmetry breaking in supersymmetric models with heavy scalar superpartners, Phys. Lett. B 598 (2004) 252 [hep-ph/0407242] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Z. Berezhiani, P.H. Chankowski, A. Falkowski and S. Pokorski, Double protection of the Higgs potential in a supersymmetric little Higgs model, Phys. Rev. Lett. 96 (2006) 031801 [hep-ph/0509311] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Pappadopulo, A. Thamm and R. Torre, A minimally tuned composite Higgs model from an extra dimension, JHEP 07 (2013) 058 [arXiv:1303.3062] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    CMS collaboration, Search for top-quark partners with charge 5/3 in the same-sign dilepton final state, arXiv:1312.2391 [INSPIRE].
  22. [22]
    T.S. Roy and M. Schmaltz, Naturally heavy superpartners and a little Higgs, JHEP 01 (2006) 149 [hep-ph/0509357] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C. Csáki, G. Marandella, Y. Shirman and A. Strumia, The Super-little Higgs, Phys. Rev. D 73 (2006) 035006 [hep-ph/0510294] [INSPIRE].ADSGoogle Scholar
  24. [24]
    B. Bellazzini, S. Pokorski, V.S. Rychkov and A. Varagnolo, Higgs doublet as a Goldstone boson in perturbative extensions of the Standard Model, JHEP 11 (2008) 027 [arXiv:0805.2107] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    B. Bellazzini, C. Csáki, A. Delgado and A. Weiler, SUSY without the Little Hierarchy, Phys. Rev. D 79 (2009) 095003 [arXiv:0902.0015] [INSPIRE].ADSGoogle Scholar
  26. [26]
    N. Craig and K. Howe, Doubling down on naturalness with a supersymmetric twin Higgs, arXiv:1312.1341 [INSPIRE].
  27. [27]
    Z. Chacko, H.-S. Goh and R. Harnik, The Twin Higgs: Natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A. Falkowski, S. Pokorski and M. Schmaltz, Twin SUSY, Phys. Rev. D 74 (2006) 035003 [hep-ph/0604066] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. Chang, L.J. Hall and N. Weiner, A Supersymmetric twin Higgs, Phys. Rev. D 75 (2007) 035009 [hep-ph/0604076] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Redi and B. Gripaios, Partially Supersymmetric Composite Higgs Models, JHEP 08 (2010) 116 [arXiv:1004.5114] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics, JHEP 10 (2013) 160 [arXiv:1306.4655] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Contino, D. Marzocca, D. Pappadopulo and R. Rattazzi, On the effect of resonances in composite Higgs phenomenology, JHEP 10 (2011) 081 [arXiv:1109.1570] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K. Agashe and R. Contino, Composite Higgs-Mediated FCNC, Phys. Rev. D 80 (2009) 075016 [arXiv:0906.1542] [INSPIRE].ADSGoogle Scholar
  34. [34]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the Tuning and the Mass of the Composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G. Panico and A. Wulzer, The Discrete Composite Higgs Model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. De Curtis, M. Redi and A. Tesi, The 4D Composite Higgs, JHEP 04 (2012) 042 [arXiv:1110.1613] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    D. Shih, Spontaneous R-symmetry breaking in ORaifeartaigh models, JHEP 02 (2008) 091 [hep-th/0703196] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  39. [39]
    R. Barbieri and G.F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    CMS collaboration, Inclusive search for a vector-like T quark with charge \( \frac{2}{3} \) in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett. B 729 (2014) 149 [arXiv:1311.7667] [INSPIRE].ADSGoogle Scholar
  41. [41]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • David Marzocca
    • 1
  • Alberto Parolini
    • 1
  • Marco Serone
    • 1
    • 2
  1. 1.SISSA and INFNTriesteItaly
  2. 2.ICTPTriesteItaly

Personalised recommendations