Advertisement

From the Berkovits formulation to the Witten formulation in open superstring field theory

  • Yuki Iimori
  • Toshifumi Noumi
  • Yuji Okawa
  • Shingo Torii
Open Access
Article

Abstract

The Berkovits formulation of open superstring field theory is based on the large Hilbert space of the superconformal ghost sector. We discuss its relation to the Witten formulation based on the small Hilbert space. We introduce a one-parameter family of conditions for partial gauge fixing of the Berkovits formulation such that the cubic interaction of the theory under the partial gauge fixing reduces to that of the Witten formulation in a singular limit. The local picture-changing operator at the open-string midpoint in the Witten formulation is regularized in our approach, and the divergence in on-shell four-point amplitudes coming from collision of picture-changing operators is resolved. The quartic interaction inherited from the Berkovits formulation plays a role of adjusting different behaviors of the picture-changing operators in the s channel and in the t channel of Feynman diagrams with two cubic vertices, and correct amplitudes in the world-sheet theory are reproduced. While gauge invariance at the second order in the coupling constant is obscured in the Witten formulation by collision of picture-changing operators, it is well defined in our approach and is recovered by including the quartic interaction inherited from the Berkovits formulation.

Keywords

Superstrings and Heterotic Strings String Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A. Belavin, A.M. Polyakov and A. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J.D. Stasheff, Homotopy associativity of H-spaces. I, Trans. Amer. Math. Soc. 108 (1963) 275.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    J.D. Stasheff, Homotopy associativity of H-spaces. II, Trans. Amer. Math. Soc. 108 (1963) 293.MathSciNetGoogle Scholar
  5. [5]
    E. Getzler and J.D.S. Jones, A -algebras and the cyclic bar complex, Illinois J. Math. 34 (1990) 256.MATHMathSciNetGoogle Scholar
  6. [6]
    M. Markl, A cohomology theory for A(m)-algebras and applications, J. Pure Appl. Algebra 83 (1992) 141.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Penkava and A.S. Schwarz, A algebras and the cohomology of moduli spaces, Trans. Amer. Math. Soc. 169 (1995) 91 [hep-th/9408064] [INSPIRE].MathSciNetGoogle Scholar
  8. [8]
    M.R. Gaberdiel and B. Zwiebach, Tensor constructions of open string theories. 1: foundations, Nucl. Phys. B 505 (1997) 569 [hep-th/9705038] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    B. Zwiebach, Closed string field theory: quantum action and the Batalin-Vilkovisky master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    T. Lada and J. Stasheff, Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys. 32 (1993) 1087 [hep-th/9209099] [INSPIRE].MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    M. Schlessinger and J. Stasheff, The Lie algebra structure of tangent cohomology and deformation theory, J. Pure Appl. Algebra 38 (1985) 313.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [INSPIRE].MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Y. Okawa, Comments on Schnabls analytic solution for tachyon condensation in Wittens open string field theory, JHEP 04 (2006) 055 [hep-th/0603159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    I. Ellwood and M. Schnabl, Proof of vanishing cohomology at the tachyon vacuum, JHEP 02 (2007) 096 [hep-th/0606142] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for tachyon condensation with general projectors, hep-th/0611110 [INSPIRE].
  16. [16]
    T. Erler, Split string formalism and the closed string vacuum, JHEP 05 (2007) 083 [hep-th/0611200] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    T. Erler, Split string formalism and the closed string vacuum, II, JHEP 05 (2007) 084 [hep-th/0612050] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Schnabl, Comments on marginal deformations in open string field theory, Phys. Lett. B 654 (2007) 194 [hep-th/0701248] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal deformations in open string field theory, JHEP 01 (2008) 028 [hep-th/0701249] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    E. Fuchs, M. Kroyter and R. Potting, Marginal deformations in string field theory, JHEP 09 (2007) 101 [arXiv:0704.2222] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    I. Kishimoto and Y. Michishita, Comments on solutions for nonsingular currents in open string field theories, Prog. Theor. Phys. 118 (2007) 347 [arXiv:0706.0409] [INSPIRE].ADSMATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    M. Kiermaier and Y. Okawa, Exact marginality in open string field theory: a general framework, JHEP 11 (2009) 041 [arXiv:0707.4472] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M. Kiermaier, Y. Okawa and B. Zwiebach, The boundary state from open string fields, arXiv:0810.1737 [INSPIRE].
  24. [24]
    T. Erler and M. Schnabl, A simple analytic solution for tachyon condensation, JHEP 10 (2009) 066 [arXiv:0906.0979] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    L. Bonora, C. Maccaferri and D. Tolla, Relevant deformations in open string field theory: a simple solution for lumps, JHEP 11 (2011) 107 [arXiv:1009.4158] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing operators in open string field theory, JHEP 03 (2011) 122 [arXiv:1009.6185] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    M. Murata and M. Schnabl, On multibrane solutions in open string field theory, Prog. Theor. Phys. Suppl. 188 (2011) 50 [arXiv:1103.1382] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  28. [28]
    L. Bonora, S. Giaccari and D. Tolla, The energy of the analytic lump solution in SFT, JHEP 08 (2011) 158 [Erratum ibid. 04 (2012) 001] [arXiv:1105.5926] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    T. Erler and C. Maccaferri, Comments on lumps from RG flows, JHEP 11 (2011) 092 [arXiv:1105.6057] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    L. Bonora, S. Giaccari and D. Tolla, Analytic solutions for Dp-branes in SFT, JHEP 12 (2011) 033 [arXiv:1106.3914] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    D. Takahashi, The boundary state for a class of analytic solutions in open string field theory, JHEP 11 (2011) 054 [arXiv:1110.1443] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    H. Hata and T. Kojita, Winding number in string field theory, JHEP 01 (2012) 088 [arXiv:1111.2389] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Murata and M. Schnabl, Multibrane solutions in open string field theory, JHEP 07 (2012) 063 [arXiv:1112.0591] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    T. Masuda, T. Noumi and D. Takahashi, Constraints on a class of classical solutions in open string field theory, JHEP 10 (2012) 113 [arXiv:1207.6220] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    T. Baba and N. Ishibashi, Energy from the gauge invariant observables, JHEP 04 (2013) 050 [arXiv:1208.6206] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Masuda, Comments on new multiple-brane solutions based on Hata-Kojita duality in open string field theory, arXiv:1211.2649 [INSPIRE].
  37. [37]
    L. Bonora and S. Giaccari, Generalized states in SFT, Eur. Phys. J. C 73 (2013) 2644 [arXiv:1304.2159] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Erler, Marginal solutions for the superstring, JHEP 07 (2007) 050 [arXiv:0704.0930] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    Y. Okawa, Analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 084 [arXiv:0704.0936] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    Y. Okawa, Real analytic solutions for marginal deformations in open superstring field theory, JHEP 09 (2007) 082 [arXiv:0704.3612] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    E. Fuchs and M. Kroyter, Marginal deformation for the photon in superstring field theory, JHEP 11 (2007) 005 [arXiv:0706.0717] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    T. Erler, Tachyon vacuum in cubic superstring field theory, JHEP 01 (2008) 013 [arXiv:0707.4591] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    M. Kiermaier and Y. Okawa, General marginal deformations in open superstring field theory, JHEP 11 (2009) 042 [arXiv:0708.3394] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    I.Y. Aref’eva, R.V. Gorbachev and P.B. Medvedev, Tachyon solution in cubic Neveu-Schwarz string field theory, Theor. Math. Phys. 158 (2009) 320 [arXiv:0804.2017] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  45. [45]
    R.V. Gorbachev, New solution of the superstring equation of motion, Theor. Math. Phys. 162 (2010) 90 [Teor. Mat. Fiz. 162 (2010) 106] [INSPIRE].MATHMathSciNetCrossRefGoogle Scholar
  46. [46]
    T. Erler, Exotic universal solutions in cubic superstring field theory, JHEP 04 (2011) 107 [arXiv:1009.1865] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    T. Noumi and Y. Okawa, Solutions from boundary condition changing operators in open superstring field theory, JHEP 12 (2011) 034 [arXiv:1108.5317] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    T. Erler, Analytic solution for tachyon condensation in Berkovitsopen superstring field theory, JHEP 11 (2013) 007 [arXiv:1308.4400] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    E. Witten, Interacting field theory of open superstrings, Nucl. Phys. B 276 (1986) 291 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    C.R. Preitschopf, C.B. Thorn and S.A. Yost, Superstring field theory, Nucl. Phys. B 337 (1990) 363 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    I.Y. Aref’eva, P.B. Medvedev and A.P. Zubarev, New representation for string field solves the consistency problem for open superstring field theory, Nucl. Phys. B 341 (1990) 464 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    N. Berkovits, SuperPoincaré invariant superstring field theory, Nucl. Phys. B 450 (1995) 90 [Erratum ibid. B 459 (1996) 439] [hep-th/9503099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    C. Wendt, Scattering amplitudes and contact interactions in Wittens superstring field theory, Nucl. Phys. B 314 (1989) 209 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    N. Berkovits, The Ramond sector of open superstring field theory, JHEP 11 (2001) 047 [hep-th/0109100] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    M. Kroyter, Superstring field theory in the democratic picture, Adv. Theor. Math. Phys. 15 (2011) 741 [arXiv:0911.2962] [INSPIRE].MATHMathSciNetCrossRefGoogle Scholar
  56. [56]
    I.A. Batalin and G.A. Vilkovisky, Gauge algebra and quantization, Phys. Lett. B 102 (1981) 27 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    I.A. Batalin and G.A. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D 28 (1983) 2567 [Erratum ibid. D 30 (1984) 508] [INSPIRE].ADSMathSciNetGoogle Scholar
  58. [58]
    S. Torii, Gauge fixing of open superstring field theory in the Berkovits non-polynomial formulation, Prog. Theor. Phys. Suppl. 188 (2011) 272 [arXiv:1201.1763] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  59. [59]
    N. Berkovits, M. Kroyter, Y. Okawa, M. Schnabl, S. Torii and B. Zwiebach, Open superstring field theory II: approaches to the BV master action, to appear.Google Scholar
  60. [60]
    B. Jurčo and K. Muenster, Type II superstring field theory: geometric approach and operadic description, JHEP 04 (2013) 126 [arXiv:1303.2323] [INSPIRE].ADSGoogle Scholar
  61. [61]
    H. Matsunaga, Construction of a gauge-invariant action for type II superstring field theory, arXiv:1305.3893 [INSPIRE].
  62. [62]
    E. Witten, Notes on super riemann surfaces and their moduli, arXiv:1209.2459 [INSPIRE].
  63. [63]
    E. Witten, Perturbative superstring theory revisited, arXiv:1209.5461 [INSPIRE].
  64. [64]
    E. Witten, More on superstring perturbation theory, arXiv:1304.2832 [INSPIRE].
  65. [65]
    R. Donagi and E. Witten, Supermoduli space is not projected, arXiv:1304.7798 [INSPIRE].
  66. [66]
    D. Friedan, S.H. Shenker and E.J. Martinec, Covariant quantization of superstrings, Phys. Lett. B 160 (1985) 55 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1981).Google Scholar
  69. [69]
    S. Torii, Validity of gauge-fixing conditions and the structure of propagators in open superstring field theory, JHEP 04 (2012) 050 [arXiv:1201.1762] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    N. Berkovits and C.T. Echevarria, Four point amplitude from open superstring field theory, Phys. Lett. B 478 (2000) 343 [hep-th/9912120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    M. Kroyter, Y. Okawa, M. Schnabl, S. Torii and B. Zwiebach, Open superstring field theory I: gauge fixing, ghost structure, and propagator, JHEP 03 (2012) 030 [arXiv:1201.1761] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    N. Berkovits, Review of open superstring field theory, hep-th/0105230 [INSPIRE].
  73. [73]
    N. Berkovits, Constrained BV description of string field theory, JHEP 03 (2012) 012 [arXiv:1201.1769] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    Y. Iimori and S. Torii, to appear.Google Scholar
  75. [75]
    N. Drukker and Y. Okawa, Vacuum string field theory without matter-ghost factorization, JHEP 06 (2005) 032 [hep-th/0503068] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    L. Rastelli, A. Sen and B. Zwiebach, String field theory around the tachyon vacuum, Adv. Theor. Math. Phys. 5 (2002) 353 [hep-th/0012251] [INSPIRE].MathSciNetGoogle Scholar
  77. [77]
    L. Rastelli, A. Sen and B. Zwiebach, Classical solutions in string field theory around the tachyon vacuum, Adv. Theor. Math. Phys. 5 (2002) 393 [hep-th/0102112] [INSPIRE].MathSciNetGoogle Scholar
  78. [78]
    L. Rastelli, A. Sen and B. Zwiebach, Vacuum string field theory, hep-th/0106010 [INSPIRE].
  79. [79]
    K. Goto, Y. Iimori and T. Noumi, in progress.Google Scholar
  80. [80]
    S.B. Giddings, The Veneziano amplitude from interacting string field theory, Nucl. Phys. B 278 (1986) 242 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  81. [81]
    M. Kiermaier, A. Sen and B. Zwiebach, Linear b-gauges for open string fields, JHEP 03 (2008) 050 [arXiv:0712.0627] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Yuki Iimori
    • 1
  • Toshifumi Noumi
    • 2
  • Yuji Okawa
    • 3
  • Shingo Torii
    • 2
  1. 1.Department of PhysicsNagoya UniversityNagoyaJapan
  2. 2.Mathematical Physics LaboratoryRIKEN Nishina CenterSaitamaJapan
  3. 3.Institute of PhysicsThe University of TokyoTokyoJapan

Personalised recommendations