Advertisement

Restricted Schur polynomials for fermions and integrability in the su(2|3) sector

  • Robert de Mello Koch
  • Pablo Diaz
  • Nkululeko Nokwara
Article

Abstract

We define restricted Schur polynomials built using both fermionic and bosonic fields which transform in the adjoint of the gauge group U(N). We show that these operators diagonalize the free field two point function to all orders in 1/N. As an application of our new operators, we study the action of the one loop dilatation operator in the su(2|3) sector in a large N but non-planar limit. The restricted Schur polynomials we study are dual to giant gravitons. We find that the one loop dilatation operator can be diagonalized using a double coset ansatz. The resulting spectrum of anomalous dimensions matches the spectrum of a set of decoupled oscillators. Finally, in an appendix we study the action of the one loop dilatation operator in an sl(2) sector. This action is again diagonalized by a double coset ansatz.

Keywords

Brane Dynamics in Gauge Theories Gauge-gravity correspondence 1/N Expansion 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  4. [4]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP 08 (2000) 040 [hep-th/0008015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].MathSciNetGoogle Scholar
  10. [10]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant gravitonswith strings attached (I), JHEP 06 (2007) 074 [hep-th/0701066] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    J. Pasukonis and S. Ramgoolam, From counting to construction of BPS states in N = 4 SYM, JHEP 02 (2011) 078 [arXiv:1010.1683] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact multi-matrix correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the spectrum of local operators, Phys. Rev. D 78 (2008) 126003 [arXiv:0807.3696] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    Y. Kimura, Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra, JHEP 12 (2009) 044 [arXiv:0910.2170] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Y. Kimura, Quarter BPS classified by Brauer algebra, JHEP 05 (2010) 103 [arXiv:1002.2424] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Pasukonis and S. Ramgoolam, Quantum states to brane geometries via fuzzy moduli spaces of giant gravitons, JHEP 04 (2012) 077 [arXiv:1201.5588] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    Y. Kimura, Correlation functions and representation bases in free N = 4 super Yang-Mills, Nucl. Phys. B 865 (2012) 568 [arXiv:1206.4844] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of conformal N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    C. Kristjansen, Review of AdS/CFT integrability, chapter IV.1: aspects of non-planarity, Lett. Math. Phys. 99 (2012) 349 [arXiv:1012.3997] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  25. [25]
    K. Zoubos, Review of AdS/CFT integrability, chapter IV.2: deformations, orbifolds and open boundaries, Lett. Math. Phys. 99 (2012) 375 [arXiv:1012.3998] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  26. [26]
    R. de Mello Koch, G. Mashile and N. Park, Emergent threebrane lattices, Phys. Rev. D 81 (2010) 106009 [arXiv:1004.1108] [INSPIRE].ADSGoogle Scholar
  27. [27]
    V. De Comarmond, R. de Mello Koch and K. Jefferies, Surprisingly simple spectra, JHEP 02 (2011) 006 [arXiv:1012.3884] [INSPIRE].Google Scholar
  28. [28]
    W. Carlson, R. de Mello Koch and H. Lin, Nonplanar integrability, JHEP 03 (2011) 105 [arXiv:1101.5404] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R. de Mello Koch, G. Kemp and S. Smith, From large-N nonplanar anomalous dimensions to open spring theory, Phys. Lett. B 711 (2012) 398 [arXiv:1111.1058] [INSPIRE].ADSGoogle Scholar
  30. [30]
    R. de Mello Koch, M. Dessein, D. Giataganas and C. Mathwin, Giant graviton oscillators, JHEP 10 (2011) 009 [arXiv:1108.2761] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    R. de Mello Koch, P. Diaz and H. Soltanpanahi, Non-planar anomalous dimensions in the sl(2) sector, Phys. Lett. B 713 (2012) 509 [arXiv:1111.6385] [INSPIRE].ADSGoogle Scholar
  32. [32]
    R. de Mello Koch, N. Ives and M. Stephanou, On subgroup adapted bases for representations of the symmetric group, J. Phys. A 45 (2012) 135204 [arXiv:1112.4316] [INSPIRE].ADSGoogle Scholar
  33. [33]
    S. Ramgoolam, Schur-Weyl duality as an instrument of gauge-string duality, AIP Conf. Proc. 1031 (2008) 255 [arXiv:0804.2764] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. de Mello Koch and S. Ramgoolam, A double coset ansatz for integrability in AdS/CFT, JHEP 06 (2012) 083 [arXiv:1204.2153] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    V. Balasubramanian, M.-X. Huang, T.S. Levi and A. Naqvi, Open strings from N = 4 super Yang-Mills, JHEP 08 (2002) 037 [hep-th/0204196] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    O. Aharony, Y.E. Antebi, M. Berkooz and R. Fishman, ‘Holey sheets: pfaffians and subdeterminants as D-brane operators in large-N gauge theories, JHEP 12 (2002) 069 [hep-th/0211152] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    D. Berenstein, Shape and holography: studies of dual operators to giant gravitons, Nucl. Phys. B 675 (2003) 179 [hep-th/0306090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    D. Sadri and M. Sheikh-Jabbari, Giant hedgehogs: spikes on giant gravitons, Nucl. Phys. B 687 (2004) 161 [hep-th/0312155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    D. Berenstein, D.H. Correa and S.E. Vazquez, Quantizing open spin chains with variable length: an example from giant gravitons, Phys. Rev. Lett. 95 (2005) 191601 [hep-th/0502172] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    D. Berenstein, D.H. Correa and S.E. Vazquez, A study of open strings ending on giant gravitons, spin chains and integrability, JHEP 09 (2006) 065 [hep-th/0604123] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant gravitonswith strings attached (II), JHEP 09 (2007) 049 [hep-th/0701067] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    D. Bekker, R. de Mello Koch and M. Stephanou, Giant gravitonswith strings attached (III), JHEP 02 (2008) 029 [arXiv:0710.5372] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    V. Balasubramanian, D. Berenstein, B. Feng and M.-X. Huang, D-branes in Yang-Mills theory and emergent gauge symmetry, JHEP 03 (2005) 006 [hep-th/0411205] [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    R. de Mello Koch, B.A.E. Mohammed and S. Smith, Nonplanar integrability: beyond the SU(2) sector, Int. J. Mod. Phys. A 26 (2011) 4553 [arXiv:1106.2483] [INSPIRE].ADSGoogle Scholar
  45. [45]
    R. de Mello Koch, G. Kemp, B.A.E. Mohammed and S. Smith, Nonplanar integrability at two loops, JHEP 10 (2012) 144 [arXiv:1206.0813] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    N. Beisert, The SU(2|3) dynamic spin chain, Nucl. Phys. B 682 (2004) 487 [hep-th/0310252] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    B. Stefański Jr. and A.A. Tseytlin, Super spin chain coherent state actions and AdS 5 × S 5 superstring, Nucl. Phys. B 718 (2005) 83 [hep-th/0503185] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Hamermesh, Group theory and its applications to physical problems, Addison-Wesley Publishing Company, U.S.A. (1962).Google Scholar
  49. [49]
    S. Collins, Restricted Schur polynomials and finite N counting, Phys. Rev. D 79 (2009) 026002 [arXiv:0810.4217] [INSPIRE].ADSGoogle Scholar
  50. [50]
    F. Dolan, Counting BPS operators in N = 4 SYM, Nucl. Phys. B 790 (2008) 432 [arXiv:0704.1038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact multi-restricted Schur polynomial correlators, JHEP 06 (2008) 101 [arXiv:0805.3025] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    N. Beisert, The complete one loop dilatation operator of N = 4 super Yang-Mills theory, Nucl. Phys. B 676 (2004) 3 [hep-th/0307015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Robert de Mello Koch
    • 1
  • Pablo Diaz
    • 1
  • Nkululeko Nokwara
    • 1
  1. 1.National Institute for Theoretical Physics, Department of Physics and Centre for Theoretical PhysicsUniversity of WitwatersrandWitsSouth Africa

Personalised recommendations