Electromagnetic quasinormal modes of rotating black strings and the AdS/CFT correspondence

  • Jaqueline Morgan
  • Alex S. Miranda
  • Vilson T. Zanchin


We investigate the quasinormal spectrum of electromagnetic perturbations of rotating black strings. Among the solutions of Einstein equations in the presence of a negative cosmological constant there are asymptotically anti-de Sitter (AdS) black holes whose horizons have the topology of a cylinder. The stationary version of these AdS black holes represents rotating black strings. The conformal field theory (CFT) dual of a black string lives in a Minkowski space with a compact dimension. On the basis of the AdS/CFT duality, we interpret a CFT plasma moving with respect to the preferred rest frame introduced by the topology as the holographic dual to a rotating black string. We explore the consequences of this correspondence by investigating the electromagnetic perturbations of a black string for different rotation parameter values. As usual the electromagnetic quasinormal modes (QNM) correspond to the poles of retarded Green’s functions of R-symmetry currents in the boundary field theory. The hydrodynamic regime of the QNM dispersion relations are analytically studied. Finally, we investigate numerically the effect of rotation on all the family of black-string electromagnetic quasinormal modes. We interpret these results from the CFT perspective and notice the emergence of effects like Doppler shift of the frequencies and dilation of the thermalization times.


AdS-CFT Correspondence Classical Theories of Gravity Black Holes 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  3. [3]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    H. Boschi-Filho and N.R. Braga, Gauge/string duality and hadronic physics, Braz. J. Phys. 37 (2007) 567 [hep-th/0604091] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S.S. Gubser, Heavy ion collisions and black hole dynamics, Int. J. Mod. Phys. D 17 (2008) 673 [Gen. Rel. Grav. 39 (2007) 1533] [INSPIRE].
  8. [8]
    J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in gauge/gravity dualsa review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [INSPIRE].ADSGoogle Scholar
  9. [9]
    E. Iancu, Partons and jets in a strongly-coupled plasma from AdS/CFT, Acta Phys. Polon. B 39 (2008) 3213 [arXiv:0812.0500] [INSPIRE].ADSGoogle Scholar
  10. [10]
    R. Myers and S. Vazquez, Quark soup al dente: applied superstring theory, Class. Quant. Grav. 25 (2008) 114008 [arXiv:0804.2423] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, Adv. High Energy Phys. 2010 (2010) 297916 [arXiv:1006.3675] [INSPIRE].Google Scholar
  12. [12]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].Google Scholar
  13. [13]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].Google Scholar
  15. [15]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    K.S. Thorne, R.H. Price and D.A. Macdonald, Black holes: the membrane paradigm, Yale Univ. Press, New Haven U.S.A. (1986) [INSPIRE].Google Scholar
  19. [19]
    M. Parikh and F. Wilczek, An action for black hole membranes, Phys. Rev. D 58 (1998) 064011 [gr-qc/9712077] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Fujita, Non-equilibrium thermodynamics near the horizon and holography, JHEP 10 (2008) 031 [arXiv:0712.2289] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Bhattacharyya et al., Forced fluid dynamics from gravity, JHEP 02 (2009) 018 [arXiv:0806.0006] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes to Einstein, JHEP 07 (2012) 146 [arXiv:1101.2451] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M.M. Caldarelli, O.J. Dias, R. Emparan and D. Klemm, Black holes as lumps of fluid, JHEP 04 (2009) 024 [arXiv:0811.2381] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J.P. Lemos, Two-dimensional black holes and planar general relativity, Class. Quant. Grav. 12 (1995) 1081 [gr-qc/9407024] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  30. [30]
    C.-G. Huang and C.-B. Liang, A torus like black hole, Phys. Lett. A 201 (1995) 27 [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional space-times, Phys. Rev. D 54 (1996) 4891 [gr-qc/9609065] [INSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    D.R. Brill, J. Louko and P. Peldan, Thermodynamics of (3 + 1)-dimensional black holes with toroidal or higher genus horizons, Phys. Rev. D 56 (1997) 3600 [gr-qc/9705012] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    J. Stachel, Globally stationary but locally static space-times: a gravitational analog of the Aharonov-Bohm effect, Phys. Rev. D 26 (1982) 1281 [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    J. Lemos, Cylindrical black hole in general relativity, Phys. Lett. B 353 (1995) 46 [gr-qc/9404041] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    R. Konoplya and A. Zhidenko, Quasinormal modes of black holes: from astrophysics to string theory, Rev. Mod. Phys. 83 (2011) 793 [arXiv:1102.4014] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    J.P. Lemos, Rotating toroidal black holes in anti-de Sitter space-times and their properties, gr-qc/0011092 [INSPIRE].
  39. [39]
    J.P. Lemos and V.T. Zanchin, Rotating charged black string and three-dimensional black holes, Phys. Rev. D 54 (1996) 3840 [hep-th/9511188] [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions, JHEP 12 (2008) 116 [arXiv:0809.4272] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    A.S. Miranda, J. Morgan and V.T. Zanchin, Quasinormal modes of plane-symmetric black holes according to the AdS/CFT correspondence, JHEP 11 (2008) 030 [arXiv:0809.0297] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A.S. Miranda and V.T. Zanchin, Quasinormal modes of plane-symmetric anti-de Sitter black holes: a complete analysis of the gravitational perturbations, Phys. Rev. D 73 (2006) 064034 [gr-qc/0510066] [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    C.P. Herzog, The hydrodynamics of M-theory, JHEP 12 (2002) 026 [hep-th/0210126] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. 2. Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    C.P. Herzog, The sound of M-theory, Phys. Rev. D 68 (2003) 024013 [hep-th/0302086] [INSPIRE].ADSGoogle Scholar
  48. [48]
    R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    M. Natsuume and T. Okamura, Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality, Phys. Rev. D 77 (2008) 066014 [Erratum ibid. D 78 (2008) 089902] [arXiv:0712.2916] [INSPIRE].
  50. [50]
    J. Morgan, V. Cardoso, A.S. Miranda, C. Molina and V.T. Zanchin, Gravitational quasinormal modes of AdS black branes in d spacetime dimensions, JHEP 09 (2009) 117 [arXiv:0907.5011] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    R.C. Myers and M.C. Wapler, Transport properties of holographic defects, JHEP 12 (2008) 115 [arXiv:0811.0480] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    N. Jokela, G. Lifschytz and M. Lippert, Magnetic effects in a holographic Fermi-like liquid, JHEP 05 (2012) 105 [arXiv:1204.3914] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Jaqueline Morgan
    • 1
  • Alex S. Miranda
    • 2
  • Vilson T. Zanchin
    • 3
  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de Ciências Exatas e TecnológicasUniversidade Estadual de Santa CruzIlhéusBrazil
  3. 3.Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSanto AndréBrazil

Personalised recommendations