Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos I. General framework and S-wave annihilation



We compute analytically the tree-level annihilation rates of a collection of non- relativistic neutralino and chargino two-particle states in the general MSSM, including the previously unknown off-diagonal rates. The results are prerequisites to the calculation of the Sommerfeld enhancement in the MSSM, which will be presented in subsequent work. They can also be used to obtain concise analytic expressions for MSSM dark matter pair annihilation in the present Universe for a large number of exclusive two-particle final states.


Cosmology of Theories beyond the SM Supersymmetric Standard Model Nonperturbative Effects 


  1. [1]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  2. [2]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P. Gondolo et al., DarkSUSY: Computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  6. [6]
    B. Herrmann and M. Klasen, SUSY-QCD Corrections to Dark Matter Annihilation in the Higgs Funnel, Phys. Rev. D 76 (2007) 117704 [arXiv:0709.0043] [INSPIRE].ADSGoogle Scholar
  7. [7]
    B. Herrmann, M. Klasen and K. Kovarik, Neutralino Annihilation into Massive Quarks with SUSY-QCD Corrections, Phys. Rev. D 79 (2009) 061701 [arXiv:0901.0481] [INSPIRE].ADSGoogle Scholar
  8. [8]
    B. Herrmann, M. Klasen and K. Kovarik, SUSY-QCD effects on neutralino dark matter annihilation beyond scalar or gaugino mass unification, Phys. Rev. D 80 (2009) 085025 [arXiv:0907.0030] [INSPIRE].ADSGoogle Scholar
  9. [9]
    F. Boudjema, G. Drieu La Rochelle and S. Kulkarni, One-loop corrections, uncertainties and approximations in neutralino annihilations: examples, Phys. Rev. D 84 (2011) 116001 [arXiv:1108.4291] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Chatterjee, M. Drees and S. Kulkarni, Radiative Corrections to the Neutralino Dark Matter Relic Densityan Effective Coupling Approach, Phys. Rev. D 86 (2012) 105025 [arXiv:1209.2328] [INSPIRE].ADSGoogle Scholar
  11. [11]
    N. Baro, F. Boudjema and A. Semenov, Full one-loop corrections to the relic density in the MSSM: a few examples, Phys. Lett. B 660 (2008) 550 [arXiv:0710.1821] [INSPIRE].ADSGoogle Scholar
  12. [12]
    N. Baro, F. Boudjema, G. Chalons and S. Hao, Relic density at one-loop with gauge boson pair production, Phys. Rev. D 81 (2010) 015005 [arXiv:0910.3293] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M. Drees, J. Kim and K. Nagao, Potentially Large One-loop Corrections to WIMP Annihilation, Phys. Rev. D 81 (2010) 105004 [arXiv:0911.3795] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Hryczuk, R. Iengo and P. Ullio, Relic densities including Sommerfeld enhancements in the MSSM, JHEP 03 (2011) 069 [arXiv:1010.2172] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Hryczuk, The Sommerfeld enhancement for scalar particles and application to sfermion co-annihilation regions, Phys. Lett. B 699 (2011) 271 [arXiv:1102.4295] [INSPIRE].ADSGoogle Scholar
  20. [20]
    A. Hryczuk and R. Iengo, The one-loop and Sommerfeld electroweak corrections to the Wino dark matter annihilation, JHEP 01 (2012) 163 [Erratum ibid. 1206 (2012) 137] [arXiv:1111.2916] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Drees and M.M. Nojiri, The neutralino relic density in minimal N = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C. Hellmann and P. Ruiz-Femenía, in preparation.Google Scholar
  24. [24]
    M. Beneke, C. Hellmann and P. Ruiz-Femenía, in preparation.Google Scholar
  25. [25]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  26. [26]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  29. [29]
    N. Baro, F. Boudjema and A. Semenov, Automatised full one-loop renormalisation of the MSSM. I. The Higgs sector, the issue of tan β and gauge invariance, Phys. Rev. D 78 (2008) 115003 [arXiv:0807.4668] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  31. [31]
    D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Denner, H. Eck, O. Hahn and J. Kublbeck, Feynman rules for fermion number violating interactions, Nucl. Phys. B 387 (1992) 467 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Rosiek, Complete set of Feynman rules for the MSSM: erratum, hep-ph/9511250 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Physik Department T31Technische Universität MünchenGarchingGermany
  2. 2.Institut für Theoretische Teilchenphysik und KosmologieRWTH Aachen UniversityAachenGermany
  3. 3.Faculty of PhysicsUniversity of ViennaWienAustria
  4. 4.Instituto de Física Corpuscular (IFIC)CSIC-Universitat de ValènciaValenciaSpain

Personalised recommendations