Quantum quench across a zero temperature holographic superfluid transition

  • Pallab Basu
  • Diptarka Das
  • Sumit R. Das
  • Tatsuma Nishioka


We study quantum quench in a holographic model of a zero temperature insulator-superfluid transition. The model is a modification of that of arXiv:0911.0962 and involves a self-coupled complex scalar field, Einstein gravity with a negative cosmological constant, and Maxwell field with one of the spatial directions compact. In a suitable regime of parameters, the scalar field can be treated as a probe field whose backreaction to both the metric and the gauge field can be ignored. We show that when the chemical potential of the dual field theory lies between two critical values, the equilibrium background geometry is an AdS soliton with a constant gauge field, while the complex scalar condenses leading to broken symmetry. We then turn on a time dependent source for the order parameter which interpolates between constant values and crosses the order-disorder critical point. In the critical region adiabaticity breaks down, but for a small rate of change of the source v there is a new small-v expansion in fractional powers of v. The resulting critical dynamics is dominated by a zero mode of the bulk field. To lowest order in this small-v expansion, the order parameter satisfies a time dependent Landau-Ginsburg equation which has z = 2, but non-dissipative. These predictions are verified by explicit numerical solutions of the bulk equations of motion.


Holography and condensed matter physics (AdS/CMT) AdS-CFT Correspondence 


  1. [1]
    S. Mondal, D. Sen and K. Sengupta, Non-equilibrium dynamics of quantum systems: order parameter evolution, defect generation, and qubit transfer, arXiv:0908.2922.
  2. [2]
    J. Dziarmaga, Dynamics of a quantum phase transition and relaxation to a steady state, Advances in Physics 59 (2010) 1063 [arXiv:0912.4034].ADSCrossRefGoogle Scholar
  3. [3]
    A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83 (2011) 863 [arXiv:1007.5331] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  5. [5]
    P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/0601225] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    P. Calabrese and J. Cardy, Quantum quenches in extended systems, J. Stat. Mech. 0706 (2007) P06008 [arXiv:0704.1880] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  7. [7]
    S. Sotiriadis and J. Cardy, Inhomogeneous quantum quenches, J. Stat. Mech. (2008) P11003 [arXiv:0808.0116].
  8. [8]
    S. Sotiriadis, P. Calabrese and J. Cardy, Quantum quench from a thermal initial state, arXiv:0903.0895.
  9. [9]
    S. Sotiriadis and J. Cardy, Quantum quench in interacting field theory: A Self-consistent approximation, Phys. Rev. B 81 (2010) 134305 [arXiv:1002.0167] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  11. [11]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  13. [13]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    R.A. Janik and R.B. Peschanski, Gauge/gravity duality and thermalization of a boost-invariant perfect fluid, Phys. Rev. D 74 (2006) 046007 [hep-th/0606149] [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    R.A. Janik, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett. 98 (2007) 022302 [hep-th/0610144] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S. Bhattacharyya and S. Minwalla, Weak field black hole formation in asymptotically AdS spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    D. Garfinkle and L.A. Pando Zayas, Rapid thermalization in field theory from gravitational collapse, Phys. Rev. D 84 (2011) 066006 [arXiv:1106.2339] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    H. Ebrahim and M. Headrick, Instantaneous thermalization in holographic plasmas, arXiv:1010.5443 [INSPIRE].
  22. [22]
    V. Balasubramanian et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].ADSGoogle Scholar
  24. [24]
    E. Caceres and A. Kundu, Holographic thermalization with chemical potential, JHEP 09 (2012) 055 [arXiv:1205.2354] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    D. Galante and M. Schvellinger, Thermalization with a chemical potential from AdS spaces, JHEP 07 (2012) 096 [arXiv:1205.1548] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T. Albash and C.V. Johnson, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Takayanagi and T. Ugajin, Measuring black hole formations by entanglement entropy via coarse-graining, JHEP 11 (2010) 054 [arXiv:1008.3439] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C.T. Asplund and S.G. Avery, Evolution of entanglement entropy in the D1-D5 brane system, Phys. Rev. D 84 (2011) 124053 [arXiv:1108.2510] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S.R. Das, T. Nishioka and T. Takayanagi, Probe branes, time-dependent couplings and thermalization in AdS/CFT, JHEP 07 (2010) 071 [arXiv:1005.3348] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. O’Bannon, Holographic thermodynamics and transport of flavor fields, arXiv:0808.1115 [INSPIRE].
  31. [31]
    K. Hashimoto, N. Iizuka and T. Oka, Rapid thermalization by baryon injection in gauge/gravity duality, Phys. Rev. D 84 (2011) 066005 [arXiv:1012.4463] [INSPIRE].ADSGoogle Scholar
  32. [32]
    K.-Y. Kim, J.P. Shock and J. Tarrio, The open string membrane paradigm with external electromagnetic fields, JHEP 06 (2011) 017 [arXiv:1103.4581] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S.P. Kumar, Spinning flavour branes and fermion pairing instabilities, Phys. Rev. D 84 (2011) 026003 [arXiv:1104.1405] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S. Janiszewski and A. Karch, Moving defects in AdS/CFT, JHEP 11 (2011) 044 [arXiv:1106.4010] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    C. Hoyos, T. Nishioka and A. O’Bannon, A Chiral Magnetic Effect from AdS/CFT with Flavor, JHEP 10 (2011) 084 [arXiv:1106.4030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    T. Kibble, Topology of cosmic domains and strings, J. Phys. A 9 (1976) 1387 [INSPIRE].ADSGoogle Scholar
  37. [37]
    W. Zurek, Cosmological experiments in superfluid Helium?, Nature 317 (1985) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Chandran, A. Erez, S. Gubser and S. Sondhi, Kibble-Zurek problem: Universality and the scaling limit, Phys. Rev. B 86 (2012) 064304.ADSGoogle Scholar
  39. [39]
    P. Basu and S.R. Das, Quantum quench across a holographic critical point, JHEP 01 (2012) 103 [arXiv:1109.3909] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    N. Iqbal, H. Liu, M. Mezei and Q. Si, Quantum phase transitions in holographic models of magnetism and superconductors, Phys. Rev. D 82 (2010) 045002 [arXiv:1003.0010] [INSPIRE].ADSGoogle Scholar
  41. [41]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    P. Basu, A. Mukherjee and H.-H. Shieh, Supercurrent: vector hair for an AdS black hole, Phys. Rev. D 79 (2009) 045010 [arXiv:0809.4494] [INSPIRE].ADSGoogle Scholar
  45. [45]
    C. Herzog, P. Kovtun and D. Son, Holographic model of superfluidity, Phys. Rev. D 79 (2009) 066002 [arXiv:0809.4870] [INSPIRE].MathSciNetADSGoogle Scholar
  46. [46]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    D. Arean, P. Basu and C. Krishnan, The many phases of holographic superfluids, JHEP 10 (2010) 006 [arXiv:1006.5165] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].Google Scholar
  49. [49]
    T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Holographic non-Fermi liquid fixed points, arXiv:1101.0597 [INSPIRE].
  50. [50]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic superconductor/insulator transition at zero temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    G.T. Horowitz and B. Way, Complete phase diagrams for a holographic superconductor/insulator system, JHEP 11 (2010) 011 [arXiv:1007.3714] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    K. Murata, S. Kinoshita and N. Tanahashi, Non-equilibrium condensation process in a holographic superconductor, JHEP 07 (2010) 050 [arXiv:1005.0633] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Bhaseen, J.P. Gauntlett, B. Simons, J. Sonner and T. Wiseman, Holographic superfluids and the dynamics of symmetry breaking, Phys. Rev. Lett. 110 (2013) 015301 [arXiv:1207.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    P. Bizon and A. Rostworowski, On weakly turbulent instability of Anti-de Sitter space, Phys. Rev. Lett. 107 (2011) 031102 [arXiv:1104.3702] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    O.J. Dias, G.T. Horowitz, D. Marolf and J.E. Santos, On the nonlinear stability of asymptotically Anti-de Sitter solutions, Class. Quant. Grav. 29 (2012) 235019 [arXiv:1208.5772] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Pallab Basu
    • 1
  • Diptarka Das
    • 1
  • Sumit R. Das
    • 1
  • Tatsuma Nishioka
    • 2
  1. 1.Department of Physics and AstronomyUniversity of KentuckyLexingtonU.S.A.
  2. 2.Department of PhysicsPrinceton UniversityPrincetonU.S.A.

Personalised recommendations