Advertisement

Holographic entanglement entropy for excited states in two dimensional CFT

  • Amin Faraji Astaneh
  • Amir Esmaeil Mosaffa
Article

Abstract

We use holographic methods to study the entanglement entropy for excited states in a two dimensional conformal field theory. The entangling area is a single interval and the excitations are produced by in and out vertex operators with given scaling dimensions. On the gravity side we provide the excitations by turning on a scalar field with an appropriate mass. The calculation amounts to using the gravitational background, with a singular boundary, to find the one point function of the vertex operators. The singular boundary is taken care of by introducing a nontrivial UV regulator surface to calculate gravitational partition functions. By means of holographic methods we reproduce the field theory results for primary excitations.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 

References

  1. [1]
    G. ’t Hooft, On the quantum structure of a black hole, Nucl. Phys. B 256 (1985) 727 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  6. [6]
    J. Eisert, M. Cramer and M. Plenio, Area laws for the entanglement entropya review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  8. [8]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  10. [10]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].MathSciNetGoogle Scholar
  13. [13]
    T. Takayanagi, Entanglement entropy from a holographic viewpoint, Class. Quant. Grav. 29 (2012) 153001 [arXiv:1204.2450] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSGoogle Scholar
  15. [15]
    N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    E. Shaghoulian, Holographic entanglement entropy and Fermi surfaces, JHEP 05 (2012) 065 [arXiv:1112.2702] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    I. Bah, A. Faraggi, L.A. Pando Zayas and C.A. Terrero-Escalante, Holographic entanglement entropy and phase transitions at finite temperature, Int. J. Mod. Phys. A 24 (2009) 2703 [arXiv:0710.5483] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    L.-Y. Hung, R.C. Myers and M. Smolkin, Some calculable contributions to holographic entanglement entropy, JHEP 08 (2011) 039 [arXiv:1105.6055] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R.C. Myers and A. Singh, Comments on holographic entanglement entropy and RG flows, JHEP 04 (2012) 122 [arXiv:1202.2068] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    C.T. Asplund and S.G. Avery, Evolution of entanglement entropy in the D1-D5 brane system, Phys. Rev. D 84 (2011) 124053 [arXiv:1108.2510] [INSPIRE].ADSGoogle Scholar
  27. [27]
    C.T. Asplund, Holographic entanglement entropy beyond coherent states, arXiv:1205.5036 [INSPIRE].
  28. [28]
    M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE].
  29. [29]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  30. [30]
    B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].
  31. [31]
    F.C. Alcaraz, M.I. Berganza and G. Sierra, Entanglement of low-energy excitations in conformal field theory, Phys. Rev. Lett. 106 (2011) 201601 [arXiv:1101.2881] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M.I. Berganza, F.C. Alcaraz and G. Sierra, Entanglement of excited states in critical spin chians, J. Stat. Mech. 01 (2012) P01016 [arXiv:1109.5673] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    A.E. Mosaffa, Symmetric orbifolds and entanglement entropy for primary excitations in two dimensional CFT, arXiv:1208.3204 [INSPIRE].
  34. [34]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 06 (2004) P06002 [hep-th/0405152] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory: a non-technical introduction, Int. J. Quant. Inf. 4 (2006) 429 [quant-ph/0505193] [INSPIRE].MATHCrossRefGoogle Scholar
  37. [37]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].MathSciNetGoogle Scholar
  38. [38]
    O. Lunin and S.D. Mathur, Correlation functions for M N /S N orbifolds, Commun. Math. Phys. 219 (2001) 399 [hep-th/0006196] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  39. [39]
    L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic calculations of Renyi entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    K. Skenderis and S.N. Solodukhin, Quantum effective action from the AdS/CFT correspondence, Phys. Lett. B 472 (2000) 316 [hep-th/9910023] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  42. [42]
    K. Krasnov, On holomorphic factorization in asymptotically AdS 3D gravity, Class. Quant. Grav. 20 (2003) 4015 [hep-th/0109198] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  43. [43]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    W. Fischler and S. Kundu, Strongly coupled gauge theories: high and low temperature behavior of non-local observables, arXiv:1212.2643 [INSPIRE].
  46. [46]
    W. Fischler, A. Kundu and S. Kundu, Holographic mutual information at finite temperature, arXiv:1212.4764 [INSPIRE].
  47. [47]
    J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical property of entanglement entropy for excited states, Phys. Rev. Lett. 110 (2013) 091602 [arXiv:1212.1164] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of PhysicsSharif University of TechnologyTehranIran
  2. 2.School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations