Advertisement

On the non-BPS first order flow in \( \mathcal{N} \) = 2 U(1)-gauged Supergravity

  • Alessandra Gnecchi
  • Chiara Toldo
Article

Abstract

We consider theories of \( \mathcal{N} \) = 2 supergravity with Fayet-Iliopoulos gauging and describe a procedure to obtain non-BPS extremal black hole solutions in asymptotically AdS4 space, in a fully symplectic covariant framework.

By considering both electric as well as magnetic gauging, we are able to find new extremal purely magnetic and dyonic solutions. We consistently impose the Dirac quantization condition as a constraint on the black hole and gravitinos charges. This additional requirement allows to parametrize the black hole entropy in terms of an integer and of the entropy of the corresponding black hole in the ungauged model.

We also find the nonextremal generalization of the dyonic solution and we compute the product of the areas. For all the configurations with asymptotic supersymmetry we furthermore compute the mass.

Keywords

Black Holes in String Theory Extended Supersymmetry Supergravity Models 

References

  1. [1]
    W. Sabra, Anti-de Sitter BPS black holes in N = 2 gauged supergravity, Phys. Lett. B 458 (1999) 36 [hep-th/9903143] [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    A.H. Chamseddine and W. Sabra, Magnetic and dyonic black holes in D = 4 gauged supergravity, Phys. Lett. B 485 (2000) 301 [hep-th/0003213] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    M. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S. Cucu, H. Lü and J.F. Vazquez-Poritz, Interpolating from AdS D−2 × S 2 to AdS D, Nucl. Phys. B 677 (2004) 181 [hep-th/0304022] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, d = 4 Black Hole Attractors in N = 2 Supergravity with Fayet-Iliopoulos Terms, Phys. Rev. D 77 (2008) 085027 [arXiv:0802.0141] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    T. Kimura, Non-supersymmetric extremal RN-AdS black holes in N = 2 gauged supergravity, JHEP 09 (2010) 061 [arXiv:1005.4607] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    C. Toldo and S. Vandoren, Static nonextremal AdS 4 black hole solutions, JHEP 09 (2012) 048 [arXiv:1207.3014] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry, JHEP 01 (2013) 053 [arXiv:1207.2679] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Larsen, A string model of black hole microstates, Phys. Rev. D 56 (1997) 1005 [hep-th/9702153] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Cvetič, G. Gibbons and C. Pope, Universal Area Product Formulae for Rotating and Charged Black Holes in Four and Higher Dimensions, Phys. Rev. Lett. 106 (2011) 121301 [arXiv:1011.0008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    P. Galli, T. Ortín, J. Perz and C.S. Shahbazi, Non-extremal black holes of N = 2, d = 4 supergravity, JHEP 07 (2011) 041 [arXiv:1105.3311] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Castro and M.J. Rodriguez, Universal properties and the first law of black hole inner mechanics, Phys. Rev. D 86 (2012) 024008 [arXiv:1204.1284] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Ceresole and G. Dall’Agata, Flow equations for non-BPS extremal black holes, JHEP 03 (2007) 110 [hep-th/0702088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    K. Hristov, C. Toldo and S. Vandoren, On BPS bounds in D = 4 N = 2 gauged supergravity, JHEP 12 (2011) 014 [arXiv:1110.2688] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    K. Hristov, On BPS bounds in D = 4 N = 2 gauged supergravity II: general matter couplings and black hole masses, JHEP 03 (2012) 095 [arXiv:1112.4289] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    K. Hristov, S. Katmadas and V. Pozzoli, Ungauging black holes and hidden supercharges, JHEP 01 (2013) 110 [arXiv:1211.0035] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M.K. Gaillard and B. Zumino, Duality rotations for interacting fields, Nucl. Phys. B 193 (1981) 221 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    L. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Batrachenko, J.T. Liu, R. McNees, W. Sabra and W. Wen, Black hole mass and Hamilton-Jacobi counterterms, JHEP 05 (2005) 034 [hep-th/0408205] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry II, Class. Quant. Grav. 30 (2013) 065003 [arXiv:1211.1618] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and Spinoza InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations