Holographic fermions on a charged Lifshitz background from Einstein-Dilaton-Maxwell model

  • Jian-Pin Wu


We study the properties of the fermionic response on a charged Lifshitz background from Einstein-Dilaton-Maxwell model. First, we find that the Lifshitz dynamical exponent z plays the role smoothing out the quasi-particle-peak. Second, by numerical methods, we study the Fermi surface structure and the dispersion relation on this background for a specific example of q = 0.5 and z = 1.02. One finds that the dispersion relation is non-linear, which indicates such a holographic system can be the candidates for holographic dual of generalized non-Fermi liquids. Third, by studying the dependence of the Fermi momentum k F on z, one observes that the Fermi momentum k F decreases with z increasing and when z > z crit , the quasi-particle-like peak enters into the oscillatory region. Finally, by matching methods, we can also determined analytically the dispersion relation after the Fermi momentum is numerically worked out. One finds that the scaling exponent δ increases rapidly with z increasing, indicating that the degree of deviate from the Landau Fermi liquid becomes larger with z increasing. But the another scaling exponent β = 1, which is independent of z.


Holography and condensed matter physics (AdS/CMT) Gauge-gravity correspondence AdS-CFT Correspondence 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  4. [4]
    J.A. Hertz, Quantum critical phenomena, Phys. Rev. B 14 (1976) 1165 [INSPIRE].ADSGoogle Scholar
  5. [5]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP 03 (2009) 070 [arXiv:0812.5088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    R.B. Mann, Lifshitz topological black holes, JHEP 06 (2009) 075 [arXiv:0905.1136] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G. Bertoldi, B.A. Burrington and A. Peet, Black holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  10. [10]
    D.-W. Pang, A note on black holes in asymptotically Lifshitz spacetime, arXiv:0905.2678 [INSPIRE].
  11. [11]
    D.-W. Pang, On charged Lifshitz black holes, JHEP 01 (2010) 116 [arXiv:0911.2777] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, Phys. Rev. D 80 (2009) 104039 [arXiv:0909.0263] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz black hole in three dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    R.-G. Cai, Y. Liu and Y.-W. Sun, A Lifshitz black hole in four dimensional R 2 gravity, JHEP 10 (2009) 080 [arXiv:0909.2807] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    Y.S. Myung, Y.-W. Kim and Y.-J. Park, Dilaton gravity approach to three dimensional Lifshitz black hole, Eur. Phys. J. C 70 (2010) 335 [arXiv:0910.4428] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Dehghani, R. Mann and R. Pourhasan, Charged Lifshitz black holes, Phys. Rev. D 84 (2011) 046002 [arXiv:1102.0578] [INSPIRE].ADSGoogle Scholar
  17. [17]
    V. Keranen and L. Thorlacius, Thermal correlators in holographic models with Lifshitz scaling, Class. Quant. Grav. 29 (2012) 194009 [arXiv:1204.0360] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    J. Tarrio and S. Vandoren, Black holes and black branes in Lifshitz spacetimes, JHEP 09 (2011) 017 [arXiv:1105.6335] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].ADSGoogle Scholar
  20. [20]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Čubrović, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J.P. Wu, Holographic fermions in charged Gauss-Bonnet black hole, JHEP 07 (2011) 106 [arXiv:1103.3982] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.P. Wu, Some properties of the holographic fermions in an extremal charged dilatonic black hole, Phys. Rev. D 84 (2011) 064008 [arXiv:1108.6134] [INSPIRE].ADSGoogle Scholar
  25. [25]
    W.J. Li and J.P. Wu, Holographic fermions in charged dilaton black branes, Nucl. Phys. B 867 (2013) 810 [arXiv:1203.0674] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S.S. Gubser and J. Ren, Analytic fermionic Greens functions from holography, Phys. Rev. D 86 (2012) 046004 [arXiv:1204.6315] [INSPIRE].ADSGoogle Scholar
  28. [28]
    W.J. Li and H. Zhang, Holographic non-relativistic fermionic fixed point and bulk dipole coupling, JHEP 11 (2011) 018 [arXiv:1110.4559] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    W.J. Li, R. Meyer and H. Zhang, Holographic non-relativistic fermionic fixed point by the charged dilatonic black hole, JHEP 01 (2012) 153 [arXiv:1111.3783] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Edalati, R.G. Leigh and P.W. Phillips, Dynamically generated mott gap from holography, Phys. Rev. Lett. 106 (2011) 091602 [arXiv:1010.3238] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Edalati, R.G. Leigh, K.W. Lo and P.W. Phillips, Dynamical gap and cuprate-like physics from holography, Phys. Rev. D 83 (2011) 046012 [arXiv:1012.3751] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J.P. Wu and H.B. Zeng, Dynamic gap from holographic fermions in charged dilaton black branes, JHEP 04 (2012) 068 [arXiv:1201.2485] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    W.Y. Wen and S.Y. Wu, Dipole coupling effect of holographic fermion in charged dilatonic gravity, Phys. Lett. B 712 (2012) 266 [arXiv:1202.6539] [INSPIRE].ADSGoogle Scholar
  34. [34]
    X.M. Kuang, B. Wang and J.P. Wu, Dipole coupling effect of holographic fermion in the background of charged Gauss-Bonnet AdS black hole, JHEP 07 (2012) 125 [arXiv:1205.6674] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    X.M. Kuang, B. Wang and J.P. Wu, Dynamical gap from holography in the charged dilaton black hole, arXiv:1210.5735 [INSPIRE].
  36. [36]
    U. Gürsoy, E. Plauschinn, H. Stoof and S. Vandoren, Holography and ARPES sum-rules, JHEP 05 (2012) 018 [arXiv:1112.5074] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    M. Alishahiha, M.R. Mohammadi Mozaffar and A. Mollabashi, Fermions on Lifshitz background, Phys. Rev. D 86 (2012) 026002 [arXiv:1201.1764] [INSPIRE].ADSGoogle Scholar
  38. [38]
    L.Q. Fang, X.H. Ge and X.M. Kuang, Holographic fermions in charged Lifshitz theory, Phys. Rev. D 86 (2012) 105037 [arXiv:1201.3832] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J.N. Laia and D. Tong, A holographic flat band, JHEP 11 (2011) 125 [arXiv:1108.1381] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    M.R.M. Mozaffar and A. Mollabashi, Holographic quantum critical points in Lifshitz space-time, arXiv:1212.6635 [INSPIRE].
  41. [41]
    N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  42. [42]
    M. Henningson and K. Sfetsos, Spinors and the AdS/CFT correspondence, Phys. Lett. B 431 (1998) 63 [hep-th/9803251] [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    W. Mueck and K. Viswanathan, Conformal field theory correlators from classical field theory on Anti-de Sitter space. 2. Vector and spinor fields, Phys. Rev. D 58 (1998) 106006 [hep-th/9805145] [INSPIRE].ADSGoogle Scholar
  44. [44]
    T. Senthil, Critical Fermi surfaces and non-Fermi liquid metals, Phys. Rev. B 78 (2008) 035103 [arXiv:0803.4009].ADSGoogle Scholar
  45. [45]
    T. Senthil, Theory of a continuous Mott transition in two dimensions, Phys. Rev. B 78 (2008) 045109 [arXiv:0804.1555].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of Physics, School of Mathematics and PhysicsBohai UniversityJinZhouChina
  2. 2.Department of PhysicsHanyang UniversitySeoulKorea
  3. 3.Center for Quantum SpacetimeSogang UniversitySeoulKorea

Personalised recommendations