On non-Gaussianities in two-field poly-instanton inflation



In the context of Type IIB LARGE volume orientifold setup equipped with poly-instanton corrections, the standard single-field poly-instanton inflation driven by a ‘Wilson’ divisor volume modulus is generalized by the inclusion of respective axion modulus. This two-field dynamics results in a “Roulette” type inflation with the presence of several inflationary trajectories which could produce 50 (or more) e-foldings. The evolution of various trajectories along with physical observables are studied. The possibility of generating primordial non-Gaussianities in the slow-roll as well as in the beyond slow-roll region is investigated. We find that although the non-linearity parameters are quite small during the slow-roll regime, the same are significantly enhanced in the beyond slow-roll regime investigated up to the end of inflation.


Strings and branes phenomenology 


  1. [1]
    A.H. Guth, The Inflationary Universe: a Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSGoogle Scholar
  2. [2]
    A.D. Linde, A New Inflationary Universe Scenario: a Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    D. Larson et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: power Spectra and WMAP-Derived Parameters, Astrophys. J. Suppl. 192 (2011) 16 [arXiv:1001.4635] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Bartolo, E. Komatsu, S. Matarrese and A. Riotto, Non-Gaussianity from inflation: theory and observations, Phys. Rept. 402 (2004) 103 [astro-ph/0406398] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    Planck collaboration, The Scientific programme of planck, astro-ph/0604069 [INSPIRE].
  7. [7]
    A.P. Yadav and B.D. Wandelt, Evidence of Primordial Non-Gaussianity f NL in the Wilkinson Microwave Anisotropy Probe 3-Year Data at 2.8σ, Phys. Rev. Lett. 100 (2008) 181301 [arXiv:0712.1148] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G. Efstathiou and S. Gratton, B-mode Detection with an Extended Planck Mission, JCAP 06 (2009) 011 [arXiv:0903.0345] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    G. Dvali and S.H. Tye, Brane inflation, Phys. Lett. B 450 (1999) 72 [hep-ph/9812483] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    S. Gukov, C. Vafa and E. Witten, CFTs from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].
  12. [12]
    E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343 [hep-th/9604030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-Brane Instantons in Type II Orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    C. Burgess, R. Kallosh and F. Quevedo, De Sitter string vacua from supersymmetric D terms, JHEP 10 (2003) 056 [hep-th/0309187] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    A. Saltman and E. Silverstein, The Scaling of the no scale potential and de Sitter model building, JHEP 11 (2004) 066 [hep-th/0402135] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Westphal, De Sitter string vacua from Kähler uplifting, JHEP 03 (2007) 102 [hep-th/0611332] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    A. Misra and P. Shukla, Moduli stabilization, large-volume dS minimum without D3-bar branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi-Yaus, Nucl. Phys. B 799 (2008) 165 [arXiv:0707.0105] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    M. Cicoli, A. Maharana, F. Quevedo and C. Burgess, De Sitter String Vacua from Dilaton-dependent Non-perturbative Effects, JHEP 06 (2012) 011 [arXiv:1203.1750] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Louis, M. Rummel, R. Valandro and A. Westphal, Building an explicit de Sitter, JHEP 10 (2012) 163 [arXiv:1208.3208] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Blanco-Pillado et al., Racetrack inflation, JHEP 11 (2004) 063 [hep-th/0406230] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    H. Abe, T. Higaki and T. Kobayashi, Moduli-mixing racetrack model, Nucl. Phys. B 742 (2006) 187 [hep-th/0512232] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    S. Kachru et al., Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    K. Dasgupta, J.P. Hsu, R. Kallosh, A.D. Linde and M. Zagermann, D3/D7 brane inflation and semilocal strings, JHEP 08 (2004) 030 [hep-th/0405247] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    A. Avgoustidis, D. Cremades and F. Quevedo, Wilson line inflation, Gen. Rel. Grav. 39 (2007) 1203 [hep-th/0606031] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  27. [27]
    D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, Compactification Effects in D-brane Inflation, Phys. Rev. Lett. 104 (2010) 251602 [arXiv:0912.4268] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    J.P. Conlon and F. Quevedo, Kähler moduli inflation, JHEP 01 (2006) 146 [hep-th/0509012] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J.P. Conlon, R. Kallosh, A.D. Linde and F. Quevedo, Volume Modulus Inflation and the Gravitino Mass Problem, JCAP 09 (2008) 011 [arXiv:0806.0809] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Cicoli, C. Burgess and F. Quevedo, Fibre Inflation: observable Gravity Waves from IIB String Compactifications, JCAP 03 (2009) 013 [arXiv:0808.0691] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Cicoli and F. Quevedo, String moduli inflation: an overview, Class. Quant. Grav. 28 (2011) 204001 [arXiv:1108.2659] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    R. Blumenhagen, X. Gao, T. Rahn and P. Shukla, Moduli Stabilization and Inflationary Cosmology with Poly-Instantons in Type IIB Orientifolds, JHEP 11 (2012) 101 [arXiv:1208.1160] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Blumenhagen, X. Gao, T. Rahn and P. Shukla, A Note on Poly-Instanton Effects in Type IIB Orientifolds on Calabi-Yau Threefolds, JHEP 06 (2012) 162 [arXiv:1205.2485] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Blumenhagen, S. Moster and E. Plauschinn, String GUT Scenarios with Stabilised Moduli, Phys. Rev. D 78 (2008) 066008 [arXiv:0806.2667] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Cicoli, F.G. Pedro and G. Tasinato, Poly-instanton Inflation, JCAP 12 (2011) 022 [arXiv:1110.6182] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Cicoli, G. Tasinato, I. Zavala, C. Burgess and F. Quevedo, Modulated Reheating and Large Non-Gaussianity in String Cosmology, JCAP 05 (2012) 039 [arXiv:1202.4580] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N-flation, JCAP 08 (2008) 003 [hep-th/0507205] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Blanco-Pillado et al., Inflating in a better racetrack, JHEP 09 (2006) 002 [hep-th/0603129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    R. Kallosh, N. Sivanandam and M. Soroush, Axion Inflation and Gravity Waves in String Theory, Phys. Rev. D 77 (2008) 043501 [arXiv:0710.3429] [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    M. Cicoli, F.G. Pedro and G. Tasinato, Natural Quintessence in String Theory, JCAP 07 (2012) 044 [arXiv:1203.6655] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    T.W. Grimm, Axion inflation in type-II string theory, Phys. Rev. D 77 (2008) 126007 [arXiv:0710.3883] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    A. Misra and P. Shukla, Large Volume Axionic Swiss-Cheese Inflation, Nucl. Phys. B 800 (2008) 384 [arXiv:0712.1260] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    L. McAllister, E. Silverstein and A. Westphal, Gravity Waves and Linear Inflation from Axion Monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].ADSGoogle Scholar
  44. [44]
    C. Burgess, J.M. Cline and M. Postma, Axionic D3-D7 Inflation, JHEP 03 (2009) 058 [arXiv:0811.1503] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    R. Kallosh and S. Prokushkin, SuperCosmology, hep-th/0403060 [INSPIRE].
  46. [46]
    J.R. Bond, L. Kofman, S. Prokushkin and P.M. Vaudrevange, Roulette inflation with Kähler moduli and their axions, Phys. Rev. D 75 (2007) 123511 [hep-th/0612197] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    J.J. Blanco-Pillado, D. Buck, E.J. Copeland, M. Gomez-Reino and N.J. Nunes, Kähler Moduli Inflation Revisited, JHEP 01 (2010) 081 [arXiv:0906.3711] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    T. Qiu and K.-C. Yang, Non-Gaussianities of Single Field Inflation with Non-minimal Coupling, Phys. Rev. D 83 (2011) 084022 [arXiv:1012.1697] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M.H. Namjoo, H. Firouzjahi and M. Sasaki, Violation of non-Gaussianity consistency relation in a single field inflationary model, Europhys. Lett. 101 (2013) 39001 [arXiv:1210.3692] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. Noller and J. Magueijo, Non-Gaussianity in single field models without slow-roll, Phys. Rev. D 83 (2011) 103511 [arXiv:1102.0275] [INSPIRE].ADSGoogle Scholar
  51. [51]
    K.T. Engel, K.S. Lee and M.B. Wise, Trispectrum versus Bispectrum in Single-Field Inflation, Phys. Rev. D 79 (2009) 103530 [arXiv:0811.3964] [INSPIRE].ADSGoogle Scholar
  52. [52]
    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    F. Vernizzi and D. Wands, Non-Gaussianities in two-field inflation, JCAP 05 (2006) 019 [astro-ph/0603799] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T. Battefeld and R. Easther, Non-Gaussianities in Multi-field Inflation, JCAP 03 (2007) 020 [astro-ph/0610296] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    K.-Y. Choi, L.M. Hall and C. van de Bruck, Spectral Running and Non-Gaussianity from Slow-Roll Inflation in Generalised Two-Field Models, JCAP 02 (2007) 029 [astro-ph/0701247] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Yokoyama, T. Suyama and T. Tanaka, Primordial Non-Gaussianity in Multi-Scalar Slow-Roll Inflation, JCAP 07 (2007) 013 [arXiv:0705.3178] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    G. Rigopoulos, E. Shellard and B. van Tent, Quantitative bispectra from multifield inflation, Phys. Rev. D 76 (2007) 083512 [astro-ph/0511041] [INSPIRE].ADSGoogle Scholar
  58. [58]
    D. Seery and J.E. Lidsey, Non-Gaussianity from the inflationary trispectrum, JCAP 01 (2007) 008 [astro-ph/0611034] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    C.T. Byrnes and G. Tasinato, Non-Gaussianity beyond slow roll in multi-field inflation, JCAP 08 (2009) 016 [arXiv:0906.0767] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    D. Battefeld and T. Battefeld, On Non-Gaussianities in Multi-Field Inflation (N fields): Bi and Tri-spectra beyond Slow-Roll, JCAP 11 (2009) 010 [arXiv:0908.4269] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    C.T. Byrnes and K.-Y. Choi, Review of local non-Gaussianity from multi-field inflation, Adv. Astron. 2010 (2010) 724525 [arXiv:1002.3110] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    T. Suyama, T. Takahashi, M. Yamaguchi and S. Yokoyama, On Classification of Models of Large Local-Type Non-Gaussianity, JCAP 12 (2010) 030 [arXiv:1009.1979] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    C.T. Byrnes, K.-Y. Choi and L.M. Hall, Conditions for large non-Gaussianity in two-field slow-roll inflation, JCAP 10 (2008) 008 [arXiv:0807.1101] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    C.T. Byrnes, Constraints on generating the primordial curvature perturbation and non-Gaussianity from instant preheating, JCAP 01 (2009) 011 [arXiv:0810.3913] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    C.T. Byrnes, K.-Y. Choi and L.M. Hall, Large non-Gaussianity from two-component hybrid inflation, JCAP 02 (2009) 017 [arXiv:0812.0807] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    E. Komatsu et al., Non-Gaussianity as a Probe of the Physics of the Primordial Universe and the Astrophysics of the Low Redshift Universe, arXiv:0902.4759 [INSPIRE].
  67. [67]
    J. Fergusson and E. Shellard, The shape of primordial non-Gaussianity and the CMB bispectrum, Phys. Rev. D 80 (2009) 043510 [arXiv:0812.3413] [INSPIRE].ADSGoogle Scholar
  68. [68]
    S. Yokoyama, T. Suyama and T. Tanaka, Primordial Non-Gaussianity in Multi-Scalar Inflation, Phys. Rev. D 77 (2008) 083511 [arXiv:0711.2920] [INSPIRE].ADSGoogle Scholar
  69. [69]
    S. Yokoyama, T. Suyama and T. Tanaka, Efficient diagrammatic computation method for higher order correlation functions of local type primordial curvature perturbations, JCAP 02 (2009) 012 [arXiv:0810.3053] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Misra and P. Shukla, ’FiniteNon-Gaussianities and Tensor-Scalar Ratio in Large Volume Swiss-Cheese Compactifications, Nucl. Phys. B 810 (2009) 174 [arXiv:0807.0996] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Mazumdar and L.-F. Wang, Separable and non-separable multi-field inflation and large non-Gaussianity, JCAP 09 (2012) 005 [arXiv:1203.3558] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    D.H. Lyth and Y. Rodriguez, The Inflationary prediction for primordial non-Gaussianity, Phys. Rev. Lett. 95 (2005) 121302 [astro-ph/0504045] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    I. Zaballa, Y. Rodriguez and D.H. Lyth, Higher order contributions to the primordial non-Gaussianity, JCAP 06 (2006) 013 [astro-ph/0603534] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    H.R. Cogollo, Y. Rodriguez and C.A. Valenzuela-Toledo, On the Issue of the zeta Series Convergence and Loop Corrections in the Generation of Observable Primordial Non-Gaussianity in Slow-Roll Inflation. Part I: the Bispectrum, JCAP 08 (2008) 029 [arXiv:0806.1546] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    Y. Rodriguez and C.A. Valenzuela-Toledo, On the Issue of the zeta Series Convergence and Loop Corrections in the Generation of Observable Primordial Non-Gaussianity in Slow-Roll Inflation. Part 2. The Trispectrum, Phys. Rev. D 81 (2010) 023531 [arXiv:0811.4092] [INSPIRE].ADSGoogle Scholar
  76. [76]
    C. Burgess et al., Non-standard primordial fluctuations and nonGaussianity in string inflation, JHEP 08 (2010) 045 [arXiv:1005.4840] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    P. Berglund and G. Ren, Non-Gaussianity in String Cosmology: a Case Study, arXiv:1010.3261 [INSPIRE].
  78. [78]
    C.-Y. Sun and D.-H. Zhang, The Non-Gaussianity of Racetrack Inflation Models, Commun. Theor. Phys. 48 (2007) 189 [astro-ph/0604298] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    A.C. Vincent and J.M. Cline, Curvature Spectra and NonGaussianities in the Roulette Inflation Model, JHEP 10 (2008) 093 [arXiv:0809.2982] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    R. Blumenhagen and M. Schmidt-Sommerfeld, Power Towers of String Instantons for N = 1 Vacua, JHEP 07 (2008) 027 [arXiv:0803.1562] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    C. Petersson, P. Soler and A.M. Uranga, D-instanton and polyinstanton effects from type-ID0-brane loops, JHEP 06 (2010) 089 [arXiv:1001.3390] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    M. Graña, Flux compactifications in string theory: a Comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    J. Blaback, U.H. Danielsson and T. Van Riet, Resolving anti-brane singularities through time-dependence, JHEP 02 (2013) 061 [arXiv:1202.1132] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    I. Bena, M. Graña, S. Kuperstein and S. Massai, Polchinski-Strassler does not uplift Klebanov-Strassler, arXiv:1212.4828 [INSPIRE].
  86. [86]
    I. Bena, M. Graña, S. Kuperstein and S. Massai, Anti-D3s - Singular to the Bitter End, arXiv:1206.6369 [INSPIRE].
  87. [87]
    C.T. Byrnes, M. Sasaki and D. Wands, The primordial trispectrum from inflation, Phys. Rev. D 74 (2006) 123519 [astro-ph/0611075] [INSPIRE].ADSGoogle Scholar
  88. [88]
    Y.-F. Cai and H.-Y. Xia, Inflation with multiple sound speeds: a model of multiple DBI type actions and non-Gaussianities, Phys. Lett. B 677 (2009) 226 [arXiv:0904.0062] [INSPIRE].ADSGoogle Scholar
  89. [89]
    T. Tanaka, T. Suyama and S. Yokoyama, Use of delta N formalismDifficulties in generating large local-type non-Gaussianity during inflation, Class. Quant. Grav. 27 (2010) 124003 [arXiv:1003.5057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  90. [90]
    A. Mazumdar and J. Rocher, Particle physics models of inflation and curvaton scenarios, Phys. Rept. 497 (2011) 85 [arXiv:1001.0993] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  91. [91]
    M. Cicoli and A. Mazumdar, Reheating for Closed String Inflation, JCAP 09 (2010) 025 [arXiv:1005.5076] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    M. Cicoli and A. Mazumdar, Inflation in string theory: a Graceful exit to the real world, Phys. Rev. D 83 (2011) 063527 [arXiv:1010.0941] [INSPIRE].ADSGoogle Scholar
  93. [93]
    G. Leung, E.R. Tarrant, C.T. Byrnes and E.J. Copeland, Reheating, Multifield Inflation and the Fate of the Primordial Observables, JCAP 09 (2012) 008 [arXiv:1206.5196] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MünchenGermany
  2. 2.State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of SciencesBeijingChina

Personalised recommendations