Advertisement

One-loop four-point amplitudes in pure and matter-coupled \( \mathcal{N}\leq 4 \) supergravity

  • John Joseph M. Carrasco
  • Marco Chiodaroli
  • Murat Günaydin
  • Radu Roiban
Article

Abstract

We construct all supergravity theories that can be obtained through factorized orbifold projections of \( \mathcal{N}=8 \) supergravity, exposing their double-copy structure, and calculate their one-loop four-point scattering amplitudes. We observe a unified structure in both matter and gravity amplitudes, and demonstrate that the four-graviton amplitudes are insensitive to the precise nature of the matter couplings. We show that these amplitudes are identical for the two different realizations of \( \mathcal{N}=4 \) supergravity with two vector multiplets, and argue that this feature extends to all multiplicities and loop orders as well as to higher dimensions. We also construct a selected set of supergravities obtained through a non-factorized orbifold action. Furthermore we calculate one-loop four-point amplitudes for all pure super-Yang-Mills theories with less-than-maximal supersymmetry using the duality between color and kinematics, finding here a unified expression that holds for all four gluon amplitudes in these theories. We recover the related amplitudes of factorized \( \mathcal{N}\leq 4 \) supergravities employing the double-copy construction. We observe a requirement that the four-point loop-level amplitudes have non-local integrand representations, exhibiting a mild non-locality in the form of inverse powers of the three external Mandelstam invariants. These are the first loop-level color-kinematic-satisfying representations in reduced supersymmetry theories.

Keywords

Scattering Amplitudes Supergravity Models Extended Supersymmetry 

References

  1. [1]
    N. Beisert, C. Kristjansen and M. Staudacher, The Dilatation operator of conformal \( \mathcal{N}=4 \) super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    N. Beisert and M. Staudacher, The \( \mathcal{N}=4 \) SYM integrable super spin chain, Nucl. Phys. B 670 (2003) 439 [hep-th/0307042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [INSPIRE].MathSciNetGoogle Scholar
  4. [4]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Hodges and J. Trnka, A note on polytopes for scattering amplitudes, JHEP 04 (2012) 081 [arXiv:1012.6030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    L. Dolan, C.R. Nappi and E. Witten, Yangian symmetry in D = 4 superconformal Yang-Mills theory, hep-th/0401243 [INSPIRE].
  8. [8]
    J. Drummond, J. Henn, V. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in \( \mathcal{N}=4 \) super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in \( \mathcal{N}=4 \) super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    Z. Bern, J. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    Z. Bern et al., Three-Loop Superfiniteness of \( \mathcal{N}=8 \) Supergravity, Phys. Rev. Lett. 98 (2007) 161303 [hep-th/0702112] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    Z. Bern, J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Manifest Ultraviolet Behavior for the Three-Loop Four-Point Amplitude of \( \mathcal{N}=8 \) Supergravity, Phys. Rev. D 78 (2008) 105019 [arXiv:0808.4112] [INSPIRE].ADSGoogle Scholar
  15. [15]
    Z. Bern, J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The Ultraviolet Behavior of \( \mathcal{N}=8 \) Supergravity at Four Loops, Phys. Rev. Lett. 103 (2009) 081301 [arXiv:0905.2326] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Amplitudes and Ultraviolet Behavior of \( \mathcal{N}=8 \) Supergravity, Fortsch. Phys. 59 (2011) 561 [arXiv:1103.1848] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    Z. Bern, L.J. Dixon and R. Roiban, Is \( \mathcal{N}=8 \) supergravity ultraviolet finite?, Phys. Lett. B 644 (2007) 265 [hep-th/0611086] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    R. Kallosh, \( \mathcal{N}=8 \) Supergravity on the Light Cone, Phys. Rev. D 80 (2009) 105022 [arXiv:0903.4630] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    M.B. Green, J.G. Russo and P. Vanhove, String theory dualities and supergravity divergences, JHEP 06 (2010) 075 [arXiv:1002.3805] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    M.B. Green, J.G. Russo and P. Vanhove, Automorphic properties of low energy string amplitudes in various dimensions, Phys. Rev. D 81 (2010) 086008 [arXiv:1001.2535] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    G. Bossard and H. Nicolai, Counterterms vs. dualities, JHEP 08 (2011) 074 [arXiv:1105.1273] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    G. Chalmers, On the finiteness of \( \mathcal{N}=8 \) quantum supergravity, hep-th/0008162 [INSPIRE].
  23. [23]
    M.B. Green, J.G. Russo and P. Vanhove, Non-renormalisation conditions in type-II string theory and maximal supergravity, JHEP 02 (2007) 099 [hep-th/0610299] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    R. Kallosh, E 7(7) symmetry and finiteness of \( \mathcal{N}=8 \) supergravity, JHEP 03 (2012) 083 [arXiv:1103.4115] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    R. Kallosh, \( \mathcal{N}=8 \) counterterms and E 7(7) current conservation, JHEP 06 (2011) 073 [arXiv:1104.5480] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M.B. Green, H. Ooguri and J.H. Schwarz, Nondecoupling of Maximal Supergravity from the Superstring, Phys. Rev. Lett. 99 (2007) 041601 [arXiv:0704.0777] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds, Nucl. Phys. B 261 (1985) 678 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds. 2., Nucl. Phys. B 274 (1986) 285 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The conformal field theory of orbifolds, Nucl. Phys. B 282 (1987) 13 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    S. Kachru and E. Silverstein, 4 − D conformal theories and strings on orbifolds, Phys. Rev. Lett. 80 (1998) 4855 [hep-th/9802183] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  31. [31]
    A.E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four-dimensions, Nucl. Phys. B 533 (1998) 199 [hep-th/9803015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    M. Bershadsky and A. Johansen, Large-N limit of orbifold field theories, Nucl. Phys. B 536 (1998) 141 [hep-th/9803249] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    D.C. Dunbar, J.H. Ettle and W.B. Perkins, Perturbative expansion of \( \mathcal{N}<8 \) Supergravity, Phys. Rev. D 83 (2011) 065015 [arXiv:1011.5378] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Z. Bern, C. Boucher-Veronneau and H. Johansson, \( \mathcal{N}\geq 4 \) Supergravity Amplitudes from Gauge Theory at One Loop, Phys. Rev. D 84 (2011) 105035 [arXiv:1107.1935] [INSPIRE].ADSGoogle Scholar
  35. [35]
    Z. Bern, S. Davies, T. Dennen and Y.-t. Huang, Absence of Three-Loop Four-Point Divergences in \( \mathcal{N}=4 \) Supergravity, Phys. Rev. Lett. 108 (2012) 201301 [arXiv:1202.3423] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Z. Bern, S. Davies, T. Dennen and Y.-t. Huang, Ultraviolet Cancellations in Half-Maximal Supergravity as a Consequence of the Double-Copy Structure, Phys. Rev. D 86 (2012) 105014 [arXiv:1209.2472] [INSPIRE].ADSGoogle Scholar
  37. [37]
    P. Tourkine and P. Vanhove, An R 4 non-renormalisation theorem in \( \mathcal{N}=4 \) supergravity, Class. Quant. Grav. 29 (2012) 115006 [arXiv:1202.3692] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    R. Kallosh, On Absence of 3-loop Divergence in \( \mathcal{N}=4 \) Supergravity, Phys. Rev. D 85 (2012) 081702 [arXiv:1202.4690] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S. Ferrara, R. Kallosh and A. Van Proeyen, Conjecture on Hidden Superconformal Symmetry of \( \mathcal{N}=4 \) Supergravity, Phys. Rev. D 87 (2013) 025004 [arXiv:1209.0418] [INSPIRE].ADSGoogle Scholar
  40. [40]
    G. Bossard, P. Howe and K. Stelle, Anomalies and divergences in \( \mathcal{N}=4 \) supergravity, Phys. Lett. B 719 (2013) 424 [arXiv:1212.0841] [INSPIRE].ADSGoogle Scholar
  41. [41]
    P. Tourkine and P. Vanhove, One-loop four-graviton amplitudes in \( \mathcal{N}=4 \) supergravity models, arXiv:1208.1255 [INSPIRE].
  42. [42]
    M. Fischler, Finiteness calculations for O(4) through O(8) extended supergravity and O(4) supergravity coupled to selfdual O(4) matter, Phys. Rev. D 20 (1979) 396 [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    E. Fradkin and A.A. Tseytlin, One loop infinities in dimensionally reduced supergravities, Phys. Lett. B 137 (1984) 357 [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    T. Bargheer, S. He and T. McLoughlin, New Relations for Three-Dimensional Supersymmetric Scattering Amplitudes, Phys. Rev. Lett. 108 (2012) 231601 [arXiv:1203.0562] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    Y.-t. Huang and H. Johansson, Equivalent D = 3 Supergravity Amplitudes from Double Copies of Three-Algebra and Two-Algebra Gauge Theories, arXiv:1210.2255 [INSPIRE].
  47. [47]
    P.H. Damgaard, R. Huang, T. Sondergaard and Y. Zhang, The complete KLT-map between gravity and gauge theories, JHEP 08 (2012) 101 [arXiv:1206.1577] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    Z. Bern, L.J. Dixon and D.A. Kosower, Progress in one loop QCD computations, Ann. Rev. Nucl. Part. Sci. 46 (1996) 109 [hep-ph/9602280] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    H. Kawai, D. Lewellen and S. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    Z. Bern, L.J. Dixon, M. Perelstein and J. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    M. Günaydin, G. Sierra and P. Townsend, Exceptional Supergravity Theories and the MAGIC Square, Phys. Lett. B 133 (1983) 72 [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Sen and C. Vafa, Dual pairs of type-II string compactification, Nucl. Phys. B 455 (1995) 165 [hep-th/9508064] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    M. Günaydin, Lectures on Spectrum Generating Symmetries and U-duality in Supergravity, Extremal Black Holes, Quantum Attractors and Harmonic Superspace, in Springer Proceedings in Physics. Vol. 134: Proceedings of the School on Attractor Mechanism 2007, Springer-Verlag, Berlin Germany (2010) [arXiv:0908.0374] [INSPIRE].
  56. [56]
    E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    M. Günaydin, G. Sierra and P. Townsend, The geometry of \( \mathcal{N}=2 \) Maxwell-Einstein supergravity and Jordan algebras, Nucl. Phys. B 242 (1984) 244 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Dabholkar and J.A. Harvey, String islands, JHEP 02 (1999) 006 [hep-th/9809122] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    S. Mizoguchi, On asymmetric orbifolds and the D = 5 no-modulus supergravity, Phys. Lett. B 523 (2001) 351 [hep-th/0109193] [INSPIRE].MathSciNetADSGoogle Scholar
  60. [60]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in \( \mathcal{N}=4 \) super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    H. Elvang, D.Z. Freedman and M. Kiermaier, Recursion relations, generating functions and unitarity sums in \( \mathcal{N}=4 \) SYM theory, JHEP 04 (2009) 009 [arXiv:0808.1720] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    Z. Bern, J. Carrasco, H. Ita, H. Johansson and R. Roiban, On the structure of supersymmetric sums in multi-loop unitarity cuts, Phys. Rev. D 80 (2009) 065029 [arXiv:0903.5348] [INSPIRE].MathSciNetADSGoogle Scholar
  63. [63]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    M. Bianchi, H. Elvang and D.Z. Freedman, Generating tree amplitudes in \( \mathcal{N}=4 \) SYM and \( \mathcal{N}=8 \) SG, JHEP 09 (2008) 063 [arXiv:0805.0757] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    S. Lal and S. Raju, The next-to-simplest quantum field theories, Phys. Rev. D 81 (2010) 105002 [arXiv:0910.0930] [INSPIRE].MathSciNetADSGoogle Scholar
  66. [66]
    H. Elvang, Y.-t. Huang and C. Peng, On-shell superamplitudes in \( \mathcal{N}<4 \) SYM, JHEP 09 (2011) 031 [arXiv:1102.4843] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    T. Dennen, Y.-t. Huang and W. Siegel, Supertwistor space for 6D maximal super Yang-Mills, JHEP 04 (2010) 127 [arXiv:0910.2688] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    M.B. Green, J.H. Schwarz and L. Brink, \( \mathcal{N}=4 \) Yang-Mills and \( \mathcal{N}=8 \) Supergravity as Limits of String Theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    D.C. Dunbar and P.S. Norridge, Calculation of graviton scattering amplitudes using string based methods, Nucl. Phys. B 433 (1995) 181 [hep-th/9408014] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    D.C. Dunbar, B. Julia, D. Seminara and M. Trigiante, Counterterms in type-I supergravities, JHEP 01 (2000) 046 [hep-th/9911158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    C. Cheung and D. O’Connell, Amplitudes and spinor-helicity in six dimensions, JHEP 07 (2009) 075 [arXiv:0902.0981] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    Z. Bern, J.J. Carrasco, T. Dennen, Y.-t. Huang and H. Ita, Generalized unitarity and six-dimensional helicity, Phys. Rev. D 83 (2011) 085022 [arXiv:1010.0494] [INSPIRE].ADSGoogle Scholar
  73. [73]
    A. Brandhuber, D. Korres, D. Koschade and G. Travaglini, One-loop Amplitudes in six-dimensional (1,1) theories from generalised unitarity, JHEP 02 (2011) 077 [arXiv:1010.1515] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    Y.-t. Huang, Non-chiral S-matrix of \( \mathcal{N}=4 \) Super Yang-Mills, arXiv:1104.2021 [INSPIRE].
  75. [75]
    Z. Bern, L.J. Dixon, D. Dunbar, M. Perelstein and J. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B 530 (1998) 401 [hep-th/9802162] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    S.H. Henry Tye and Y. Zhang, Dual identities inside the gluon and the graviton scattering amplitudes, JHEP 06 (2010) 071 [Erratum ibid. 1104 (2011) 114] [arXiv:1003.1732] [INSPIRE].
  77. [77]
    N. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, Monodromy and Jacobi-like relations for color-ordered amplitudes, JHEP 06 (2010) 003 [arXiv:1003.2403] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    J. Broedel and J.J.M. Carrasco, Virtuous trees at five and six points for Yang-Mills and gravity, Phys. Rev. D 84 (2011) 085009 [arXiv:1107.4802] [INSPIRE].ADSGoogle Scholar
  79. [79]
    Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].ADSGoogle Scholar
  80. [80]
    R. Monteiro and D. O’Connell, The kinematic algebra from the self-dual sector, JHEP 07 (2011) 007 [arXiv:1105.2565] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    M. Kiermaier, Gravity as square of gauge theory, presented at Amplitudes 2010, London U.K. (2010), http://www.strings.ph.qmul.ac.uk/∼theory/Amplitudes2010.
  82. [82]
    N. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The momentum kernel of gauge and gravity theories, JHEP 01 (2011) 001 [arXiv:1010.3933] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  83. [83]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  84. [84]
    Z. Bern and T. Dennen, A Color Dual Form for Gauge-Theory Amplitudes, Phys. Rev. Lett. 107 (2011) 081601 [arXiv:1103.0312] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    Z. Bern, J. Carrasco, L. Dixon, H. Johansson and R. Roiban, Simplifying Multiloop Integrands and Ultraviolet Divergences of Gauge Theory and Gravity Amplitudes, Phys. Rev. D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].ADSGoogle Scholar
  86. [86]
    J.J. Carrasco and H. Johansson, Five-Point Amplitudes in \( \mathcal{N}=4 \) super-Yang-Mills Theory and \( \mathcal{N}=8 \) Supergravity, Phys. Rev. D 85 (2012) 025006 [arXiv:1106.4711] [INSPIRE].ADSGoogle Scholar
  87. [87]
    Z. Bern, C. Boucher-Veronneau and H. Johansson, \( \mathcal{N}\geq 4 \) Supergravity Amplitudes from Gauge Theory at One Loop, Phys. Rev. D 84 (2011) 105035 [arXiv:1107.1935] [INSPIRE].ADSGoogle Scholar
  88. [88]
    D.C. Dunbar, J.H. Ettle and W.B. Perkins, Perturbative expansion of \( \mathcal{N}<8 \) Supergravity, Phys. Rev. D 83 (2011) 065015 [arXiv:1011.5378] [INSPIRE].ADSGoogle Scholar
  89. [89]
    C. Boucher-Veronneau and L. Dixon, \( \mathcal{N}\geq 4 \) supergravity amplitudes from gauge theory at two loops, JHEP 12 (2011) 046 [arXiv:1110.1132] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  90. [90]
    S. Oxburgh and C. White, BCJ duality and the double copy in the soft limit, JHEP 02 (2013) 127 [arXiv:1210.1110] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    J. Broedel and L.J. Dixon, Color-kinematics duality and double-copy construction for amplitudes from higher-dimension operators, JHEP 10 (2012) 091 [arXiv:1208.0876] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    S.G. Naculich, H. Nastase and H.J. Schnitzer, Linear relations between \( \mathcal{N}\geq 4 \) supergravity and subleading-color SYM amplitudes, JHEP 01 (2012) 041 [arXiv:1111.1675] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  93. [93]
    J.J.M. Carrasco and H. Johansson, Generic multiloop methods and application to \( \mathcal{N}=4 \) super-Yang-Mills, J. Phys. A 44 (2011) 454004 [arXiv:1103.3298] [INSPIRE].MathSciNetADSGoogle Scholar
  94. [94]
    Z. Bern and A. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys. B 467 (1996) 479 [hep-ph/9511336] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    J. Broedel and J.J.M. Carrasco, Virtuous Trees at Five and Six Points for Yang-Mills and Gravity, Phys. Rev. D 84 (2011) 085009 [arXiv:1107.4802] [INSPIRE].ADSGoogle Scholar
  96. [96]
    T. Bargheer, S. He and T. McLoughlin, New Relations for Three-Dimensional Supersymmetric Scattering Amplitudes, Phys. Rev. Lett. 108 (2012) 231601 [arXiv:1203.0562] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    Y.-t. Huang and H. Johansson, Equivalent D = 3 Supergravity Amplitudes from Double Copies of Three-Algebra and Two-Algebra Gauge Theories, arXiv:1210.2255 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • John Joseph M. Carrasco
    • 1
  • Marco Chiodaroli
    • 2
  • Murat Günaydin
    • 2
  • Radu Roiban
    • 2
  1. 1.Stanford Institute for Theoretical Physics and Department of PhysicsStanford UniversityStanfordU.S.A.
  2. 2.Institute for Gravitation and the CosmosThe Pennsylvania State UniversityUniversity ParkU.S.A.

Personalised recommendations