A basis for large operators in N=4 SYM with orthogonal gauge group



We develop techniques to study the correlation functions of “large operators” whose bare dimension grows parametrically with N, in SO(N) gauge theory. We build the operators from a single complex matrix. For these operators, the large N limit of correlation functions is not captured by summing only the planar diagrams. By employing group representation theory we are able to define local operators which generalize the Schur polynomials of the theory with gauge group U(N). We compute the two point function of our operators exactly in the free field limit showing that they diagonalize the two point function. We explain how these results can be used to obtain the exact free field answers for correlators of operators in the trace basis.


Brane Dynamics in Gauge Theories Gauge-gravity correspondence 1/N Expansion 


  1. [1]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  4. [4]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP 08 (2000) 040 [hep-th/0008015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].MathSciNetGoogle Scholar
  10. [10]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant Gravitons - with Strings Attached (I), JHEP 06 (2007) 074 [hep-th/0701066] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    T.W. Brown, P. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact Multi-Matrix Correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y. Kimura, Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra, JHEP 12 (2009) 044 [arXiv:0910.2170] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Y. Kimura, Correlation functions and representation bases in free N = 4 Super Yang-Mills, Nucl. Phys. B 865 (2012) 568 [arXiv:1206.4844] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. de Mello Koch, G. Mashile and N. Park, Emergent Threebrane Lattices, Phys. Rev. D 81 (2010) 106009 [arXiv:1004.1108] [INSPIRE].ADSGoogle Scholar
  18. [18]
    V. De Comarmond, R. de Mello Koch and K. Jefferies, Surprisingly Simple Spectra, JHEP 02 (2011) 006 [arXiv:1012.3884] [INSPIRE].Google Scholar
  19. [19]
    W. Carlson, R. de Mello Koch and H. Lin, Nonplanar Integrability, JHEP 03 (2011) 105 [arXiv:1101.5404] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. de Mello Koch, G. Kemp and S. Smith, From Large-N Nonplanar Anomalous Dimensions to Open Spring Theory, Phys. Lett. B 711 (2012) 398 [arXiv:1111.1058] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R. de Mello Koch, M. Dessein, D. Giataganas and C. Mathwin, Giant Graviton Oscillators, JHEP 10 (2011) 009 [arXiv:1108.2761] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    R. de Mello Koch and S. Ramgoolam, A double coset ansatz for integrability in AdS/CFT, JHEP 06 (2012) 083 [arXiv:1204.2153] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    J. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    N. Beisert, C. Kristjansen and M. Staudacher, The Dilatation operator of conformal N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    C. Kristjansen, Review of AdS/CFT Integrability, Chapter IV.1: Aspects of Non-Planarity, Lett. Math. Phys. 99 (2012) 349 [arXiv:1012.3997] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  27. [27]
    K. Zoubos, Review of AdS/CFT Integrability, Chapter IV.2: Deformations, Orbifolds and Open Boundaries, Lett. Math. Phys. 99 (2012) 375 [arXiv:1012.3998] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  28. [28]
    R. de Mello Koch and R. Gwyn, Giant graviton correlators from dual SU(N) super Yang-Mills theory, JHEP 11 (2004) 081 [hep-th/0410236] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    P. Caputa, C. Kristjansen and K. Zoubos, On the spectral problem of N = 4 SYM with orthogonal or symplectic gauge group, JHEP 10 (2010) 082 [arXiv:1005.2611] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    E. Witten, Baryons and branes in anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [INSPIRE].ADSGoogle Scholar
  31. [31]
    O. Aharony, Y.E. Antebi, M. Berkooz and R. Fishman, ’Holey sheets: Pfaffians and subdeterminants as D-brane operators in large-N gauge theories, JHEP 12 (2002) 069 [hep-th/0211152] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    V.N. Ivanov, Bispherical functions on the symmetric group associated with the hyperoctahedral subgroup, J. Math. Sci. 96 (1999) 3505.CrossRefGoogle Scholar
  33. [33]
    S. Corley and S. Ramgoolam, Finite factorization equations and sum rules for BPS correlators in N = 4 SYM theory, Nucl. Phys. B 641 (2002) 131 [hep-th/0205221] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    P. Caputa and B.A.E. Mohammed, From Schurs to Giants in ABJ(M), JHEP 01 (2013) 055 [arXiv:1210.7705] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G.D. James and A. Kerber, The representation theory of the symmetric group, volume 16 of Encyclopedia of Mathematics and its Applications Cambridge University Press. See in particular chapter 4.Google Scholar
  36. [36]
    H. Mizukawa, Wreath Product Generalizations of the Triple (S 2n , H n , φ) and Their Spherical Functions, arXiv:0908.3056.

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Pawel Caputa
    • 1
  • Robert de Mello Koch
    • 1
    • 2
  • Pablo Diaz
    • 1
  1. 1.National Institute for Theoretical Physics, Department of Physics and Centre for Theoretical PhysicsUniversity of WitwatersrandWitsSouth Africa
  2. 2.Institute of Advanced StudyDurham UniversityDurhamU.K.

Personalised recommendations