Advertisement

Un-twisting the NHEK with spectral flows

  • Iosif Bena
  • Monica Guica
  • Wei Song
Open Access
Article

Abstract

We show that the six-dimensional uplift of the five-dimensional Near-Horizon-Extremal-Kerr (NHEK) spacetime can be obtained from an AdS 3 × S 3 solution by a sequence of supergravity — but not string theory — dualities. We present three ways of viewing these pseudo-dualities: as a series of transformations in the STU model, as a combination of Melvin twists and T-dualities and, finally, as a sequence of two generalized spectral flows and a coordinate transformation. We then use these to find an infinite family of asymptotically flat embeddings of NHEK spacetimes in string theory, parameterized by the arbitrary values of the moduli at infinity. Our construction reveals the existence of non-perturbative deformations of asymptotically-NHEK spacetimes, which correspond to the bubbling of nontrivial cycles wrapped by flux, and paves the way for finding a microscopic field theory dual to NHEK which involves Melvin twists of the D1-D5 gauge theory. Our analysis also clarifies the meaning of the generalized spectral flow solution-generating techniques that have been recently employed in the literature.

Keywords

Black Holes in String Theory Intersecting branes models AdS-CFT Correspondence 

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  4. [4]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    T. Hartman, K. Murata, T. Nishioka and A. Strominger, CFT duals for extreme black holes, JHEP 04 (2009) 019 [arXiv:0811.4393] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    H. Lü, J. Mei and C. Pope, Kerr/CFT correspondence in diverse dimensions, JHEP 04 (2009) 054 [arXiv:0811.2225] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    T. Azeyanagi, N. Ogawa and S. Terashima, Holographic duals of Kaluza-Klein black holes, JHEP 04 (2009) 061 [arXiv:0811.4177] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    D.D. Chow, M. Cvetič, H. Lü and C. Pope, Extremal black hole/CFT correspondence in (gauged) supergravities, Phys. Rev. D 79 (2009) 084018 [arXiv:0812.2918] [INSPIRE].ADSGoogle Scholar
  9. [9]
    T. Azeyanagi, N. Ogawa and S. Terashima, The Kerr/CFT correspondence and string theory, Phys. Rev. D 79 (2009) 106009 [arXiv:0812.4883] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    H. Isono, T.-S. Tai and W.-Y. Wen, Kerr/CFT correspondence and five-dimensional BMPV black holes, Int. J. Mod. Phys. A 24 (2009) 5659 [arXiv:0812.4440] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    C.-M. Chen and J.E. Wang, Holographic duals of black holes in five-dimensional minimal supergravity, Class. Quant. Grav. 27 (2010) 075004 [arXiv:0901.0538] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    H. Lü, J.-W. Mei, C. Pope and J.F. Vazquez-Poritz, Extremal static AdS black hole/CFT correspondence in gauged supergravities, Phys. Lett. B 673 (2009) 77 [arXiv:0901.1677] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Compere, K. Murata and T. Nishioka, Central charges in extreme black hole/CFT correspondence, JHEP 05 (2009) 077 [arXiv:0902.1001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    C. Krishnan and S. Kuperstein, A comment on Kerr-CFT and Wald entropy, Phys. Lett. B 677 (2009) 326 [arXiv:0903.2169] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    D. Astefanesei and Y.K. Srivastava, CFT duals for attractor horizons, Nucl. Phys. B 822 (2009) 283 [arXiv:0902.4033] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    W.-Y. Wen, Holographic descriptions of (near-)extremal black holes in five dimensional minimal supergravity, arXiv:0903.4030 [INSPIRE].
  17. [17]
    T. Azeyanagi, G. Compere, N. Ogawa, Y. Tachikawa and S. Terashima, Higher-derivative corrections to the asymptotic Virasoro symmetry of 4d extremal black holes, Prog. Theor. Phys. 122 (2009) 355 [arXiv:0903.4176] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  18. [18]
    J.-J. Peng and S.-Q. Wu, Extremal Kerr/CFT correspondence of five-dimensional rotating (charged) black holes with squashed horizons, Nucl. Phys. B 828 (2010) 273 [arXiv:0911.5070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    W. Song and A. Strominger, Warped AdS 3 /dipole-CFT duality, JHEP 05 (2012) 120 [arXiv:1109.0544] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A. Bergman and O.J. Ganor, Dipoles, twists and noncommutative gauge theory, JHEP 10 (2000) 018 [hep-th/0008030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    K. Dasgupta and M. Sheikh-Jabbari, Noncommutative dipole field theories, JHEP 02 (2002) 002 [hep-th/0112064] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Bergman, K. Dasgupta, O.J. Ganor, J.L. Karczmarek and G. Rajesh, Nonlocal field theories and their gravity duals, Phys. Rev. D 65 (2002) 066005 [hep-th/0103090] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    S. El-Showk and M. Guica, Kerr/CFT, dipole theories and nonrelativistic CFTs, JHEP 12 (2012) 009 [arXiv:1108.6091] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    M. Guica and A. Strominger, Microscopic realization of the Kerr/CFT correspondence, JHEP 02 (2011) 010 [arXiv:1009.5039] [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    O.J. Ganor, A new Lorentz violating nonlocal field theory from string-theory, Phys. Rev. D 75 (2007) 025002 [hep-th/0609107] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    O.J. Ganor, A. Hashimoto, S. Jue, B.S. Kim and A. Ndirango, Aspects of Puff field theory, JHEP 08 (2007) 035 [hep-th/0702030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    I. Bena, N. Bobev and N.P. Warner, Spectral flow and the spectrum of multi-center solutions, Phys. Rev. D 77 (2008) 125025 [arXiv:0803.1203] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    W. Song and A. Strominger, D-brane construction of the 5D NHEK dual, JHEP 07 (2012) 176 [arXiv:1105.0431] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    G. Dall’Agata, S. Giusto and C. Ruef, U-duality and non-BPS solutions, JHEP 02 (2011) 074 [arXiv:1012.4803] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A.J. Amsel, G.T. Horowitz, D. Marolf and M.M. Roberts, No dynamics in the extremal Kerr throat, JHEP 09 (2009) 044 [arXiv:0906.2376] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    O.J. Dias, H.S. Reall and J.E. Santos, Kerr-CFT and gravitational perturbations, JHEP 08 (2009) 101 [arXiv:0906.2380] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    I. Bena and C. Ciocarlie, Exact N = 2 supergravity solutions with polarized branes, Phys. Rev. D 70 (2004) 086005 [hep-th/0212252] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069 [hep-th/0503201] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    L.F. Alday, G. Arutyunov and S. Frolov, Green-Schwarz strings in TsT-transformed backgrounds, JHEP 06 (2006) 018 [hep-th/0512253] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    T. Azeyanagi, D.M. Hofman, W. Song and A. Strominger, The spectrum of strings on warped AdS 3 × S 3, arXiv:1207.5050 [INSPIRE].
  38. [38]
    H.J. Boonstra, B. Peeters and K. Skenderis, Duality and asymptotic geometries, Phys. Lett. B 411 (1997) 59 [hep-th/9706192] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    K. Sfetsos and K. Skenderis, Microscopic derivation of the Bekenstein-Hawking entropy formula for nonextremal black holes, Nucl. Phys. B 517 (1998) 179 [hep-th/9711138] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    M. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    M. Duff, H. Lü and C. Pope, AdS 3 × S 3 (un)twisted and squashed and an O(2, 2, \( \mathbb{Z} \)) multiplet of dyonic strings, Nucl. Phys. B 544 (1999) 145 [hep-th/9807173] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. Lapan, private communication.Google Scholar
  43. [43]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    J.B. Gutowski, D. Martelli and H.S. Reall, All supersymmetric solutions of minimal supergravity in six-dimensions, Class. Quant. Grav. 20 (2003) 5049 [hep-th/0306235] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  45. [45]
    S. Ferrara and M. Günaydin, Orbits of exceptional groups, duality and BPS states in string theory, Int. J. Mod. Phys. A 13 (1998) 2075 [hep-th/9708025] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Bellucci, S. Ferrara, R. Kallosh and A. Marrani, Extremal black hole and flux vacua attractors, Lect. Notes Phys. 755 (2008) 115 [arXiv:0711.4547] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    O.J. Dias, R. Emparan and A. Maccarrone, Microscopic theory of black hole superradiance, Phys. Rev. D 77 (2008) 064018 [arXiv:0712.0791] [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    J. Breckenridge et al., Macroscopic and microscopic entropy of near extremal spinning black holes, Phys. Lett. B 381 (1996) 423 [hep-th/9603078] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    M. Cvetič and D. Youm, General rotating five-dimensional black holes of toroidally compactified heterotic string, Nucl. Phys. B 476 (1996) 118 [hep-th/9603100] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. Schwimmer and N. Seiberg, Comments on the N = 2, N = 3, N = 4 superconformal algebras in two-dimensions, Phys. Lett. B 184 (1987) 191 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    V. Balasubramanian, J. de Boer, E. Keski-Vakkuri and S.F. Ross, Supersymmetric conical defects: towards a string theoretic description of black hole formation, Phys. Rev. D 64 (2001) 064011 [hep-th/0011217] [INSPIRE].ADSGoogle Scholar
  52. [52]
    P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01 (2007) 002 [hep-th/0607138] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    J. Hansen and P. Kraus, Generating charge from diffeomorphisms, JHEP 12 (2006) 009 [hep-th/0606230] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    K. Goldstein and S. Katmadas, Almost BPS black holes, JHEP 05 (2009) 058 [arXiv:0812.4183] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005) 045002 [hep-th/0408122] [INSPIRE].MathSciNetADSGoogle Scholar
  56. [56]
    I. Bena, P. Kraus and N.P. Warner, Black rings in Taub-NUT, Phys. Rev. D 72 (2005) 084019 [hep-th/0504142] [INSPIRE].MathSciNetADSGoogle Scholar
  57. [57]
    B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites, JHEP 11 (2011) 127 [hep-th/0304094] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, Supergravity solutions from floating branes, JHEP 03 (2010) 047 [arXiv:0910.1860] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    M. Gutperle and A. Strominger, Fluxbranes in string theory, JHEP 06 (2001) 035 [hep-th/0104136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    J.M. Figueroa-O’Farrill and J. Simon, Supersymmetric Kaluza-Klein reductions of M 2-branes and M 5-branes, Adv. Theor. Math. Phys. 6 (2003) 703 [hep-th/0208107] [INSPIRE].MathSciNetGoogle Scholar
  61. [61]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [INSPIRE].MathSciNetADSGoogle Scholar
  62. [62]
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].MathSciNetADSGoogle Scholar
  64. [64]
    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    I. Bena, G. Dall’Agata, S. Giusto, C. Ruef and N.P. Warner, Non-BPS black rings and black holes in Taub-NUT, JHEP 06 (2009) 015 [arXiv:0902.4526] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    I. Bena, N. Bobev, C. Ruef and N.P. Warner, Supertubes in bubbling backgrounds: Born-Infeld meets supergravity, JHEP 07 (2009) 106 [arXiv:0812.2942] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    O. Lunin and S.D. Mathur, Metric of the multiply wound rotating string, Nucl. Phys. B 610 (2001) 49 [hep-th/0105136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with angular momentum, hep-th/0212210 [INSPIRE].
  69. [69]
    R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    I. Bena and R. Roiban, N = 1∗ in five-dimensions: Dijkgraaf-Vafa meets Polchinski-Strassler, JHEP 11 (2003) 001 [hep-th/0308013] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys. B 531 (1998) 323 [hep-th/9609219] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    R. Dijkgraaf and C. Vafa, A perturbative window into nonperturbative physics, hep-th/0208048 [INSPIRE].
  73. [73]
    T.J. Hollowood, Five-dimensional gauge theories and quantum mechanical matrix models, JHEP 03 (2003) 039 [hep-th/0302165] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    I. Bena and P. Kraus, Microstates of the D1-D5-KK system, Phys. Rev. D 72 (2005) 025007 [hep-th/0503053] [INSPIRE].MathSciNetADSGoogle Scholar
  75. [75]
    D. Mateos and P.K. Townsend, Supertubes, Phys. Rev. Lett. 87 (2001) 011602 [hep-th/0103030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  76. [76]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].MathSciNetADSGoogle Scholar
  77. [77]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    A. Saxena, G. Potvin, S. Giusto and A.W. Peet, Smooth geometries with four charges in four dimensions, JHEP 04 (2006) 010 [hep-th/0509214] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    V. Balasubramanian, E.G. Gimon and T.S. Levi, Four dimensional black hole microstates: from D-branes to spacetime foam, JHEP 01 (2008) 056 [hep-th/0606118] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  80. [80]
    J. Maharana and J.H. Schwarz, Noncompact symmetries in string theory, Nucl. Phys. B 390 (1993) 3 [hep-th/9207016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  1. 1.Institut de Physique Théorique, CEA Saclay, CNRS-URA 2306Gif sur YvetteFrance
  2. 2.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaU.S.A
  3. 3.Center for the Fundamental Laws of NatureHarvard UniversityCambridgeU.S.A

Personalised recommendations