Advertisement

Symmetries of curved superspace

  • Sergei M. Kuzenko
Article

Abstract

The formalism to determine (conformal) isometries of a given curved super-space was elaborated almost two decades ago in the context of the old minimal formulation for \( \mathcal{N}=1 \) supergravity in four dimensions (4D). This formalism is universal, for it may readily be generalized to supersymmetric backgrounds associated with any supergravity theory formulated in superspace. In particular, it has already been used to construct rigid supersymmetric field theories in 5D \( \mathcal{N}=1 \), 4D \( \mathcal{N}=2 \) and 3D (p, q) anti-de Sitter super-spaces. In the last two years, there have appeared a number of publications devoted to the construction of supersymmetric backgrounds in off-shell 4D \( \mathcal{N}=1 \) supergravity theories using component field considerations. Here we demonstrate how to read off the key results of these recent publications from the more general superspace approach developed in the 1990s. We also present a universal superspace setting to construct supersymmetric backgrounds, which is applicable to any of the known off-shell formulations for \( \mathcal{N}=1 \) supergravity. This approach is based on the realizations of the new minimal and non-minimal supergravity theories as super-Weyl invariant couplings of the old minimal supergravity to certain conformal compensators.

Keywords

Superspaces Supergravity Models 

References

  1. [1]
    I.L. Buchbinder and S.M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity or a Walk Through Superspace, IOP, Bristol U.K. (1995). Revised edition, IOP, Bristol U.K. (1998).Google Scholar
  2. [2]
    J. Wess and B. Zumino, Superfield Lagrangian for Supergravity, Phys. Lett. B 74 (1978) 51 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R. Grimm, J. Wess and B. Zumino, A complete solution of the Bianchi identities in superspace, Nucl. Phys. B 152 (1979) 255 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    K. Stelle and P.C. West, Minimal auxiliary fields for supergravity, Phys. Lett. B 74 (1978) 330 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Ferrara and P. van Nieuwenhuizen, The auxiliary fields of supergravity, Phys. Lett. B 74 (1978) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    B. Zumino, Supergravity and superspace, in Recent Developments in Gravitation, Cargese 1978, M. Levy and S. Deser eds., Plenum Press, New York U.S.A. (1978), pg. 405.Google Scholar
  7. [7]
    J. Wess and B. Zumino, The component formalism follows from the superspace formulation of supergravity, Phys. Lett. B 79 (1978) 394 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Roček and U. Lindström, Components of superspace, Phys. Lett. B 79 (1978) 217 [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Roček and U. Lindström, More components of superspace, Phys. Lett. B 83 (1979) 179 [INSPIRE].ADSGoogle Scholar
  10. [10]
    U. Lindström, A. Karlhede and M. Roček, The component gauges in supergravity, Nucl. Phys. B 191 (1981) 549 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    SJ.. Gates Jr., M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].Google Scholar
  12. [12]
    J. Wess and J. Bagger, Supersymmetry and Supergravity, first edition, Princeton University Press, Princeton U.S.A. (1983) [second edition, Princeton University Press, Princeton U.S.A. (1992)].Google Scholar
  13. [13]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Five-dimensional N = 1 AdS superspace: Geometry, off-shell multiplets and dynamics, Nucl. Phys. B 785 (2007) 34 [arXiv:0704.1185] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Field theory in 4D N = 2 conformally flat superspace, JHEP 10 (2008) 001 [arXiv:0807.3368] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    D. Butter and S.M. Kuzenko, N = 2 supersymmetric σ-models in AdS, Phys. Lett. B 703 (2011) 620 [arXiv:1105.3111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    D. Butter and S.M. Kuzenko, The structure of N = 2 supersymmetric nonlinear σ-models in AdS 4, JHEP 11 (2011) 080 [arXiv:1108.5290] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    D. Butter, S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Extended supersymmetric σ-models in AdS 4 from projective superspace, JHEP 05 (2012) 138 [arXiv:1203.5001] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Three-dimensional N = 2 (AdS) supergravity and associated supercurrents, JHEP 12 (2011) 052 [arXiv:1109.0496] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Three-dimensional (p, q) AdS superspaces and matter couplings, JHEP 08 (2012) 024 [arXiv:1205.4622] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Butter, S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Nonlinear σ-models with AdS supersymmetry in three dimensions, JHEP 02 (2013) 121 [arXiv:1210.5906] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    B. Jia and E. Sharpe, Rigidly supersymmetric gauge theories on curved superspace, JHEP 04 (2012) 139 [arXiv:1109.5421] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    H. Samtleben and D. Tsimpis, Rigid supersymmetric theories in 4d Riemannian space, JHEP 05 (2012) 132 [arXiv:1203.3420] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on curved spaces and holography, JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring curved superspace, JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    D. Cassani, C. Klare, D. Martelli, A. Tomasiello and A. Zaffaroni, Supersymmetry in Lorentzian curved spaces and holography, arXiv:1207.2181 [INSPIRE].
  27. [27]
    J.T. Liu, L.A. Pando Zayas and D. Reichmann, Rigid supersymmetric backgrounds of minimal off-shell supergravity, JHEP 10 (2012) 034 [arXiv:1207.2785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    T.T. Dumitrescu and G. Festuccia, Exploring curved superspace (II), JHEP 01 (2013) 072 [arXiv:1209.5408] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    A. Kehagias and J. Russo, Global supersymmetry on curved spaces in various dimensions, arXiv:1211.1367 [INSPIRE].
  30. [30]
    P.S. Howe and R. Tucker, Scale invariance in superspace, Phys. Lett. B 80 (1978) 138 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    S.J. Gates Jr., A. Karlhede, U. Lindström and M. Roček, N = 1 superspace components of extended supergravity, Class. Quant. Grav. 1 (1984) 227 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S.J. Gates Jr., A. Karlhede, U. Lindström and M. Roček, N = 1 superspace geometry of extended supergravity, Nucl. Phys. B 243 (1984) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    V. Ogievetsky and E. Sokatchev, On vector superfield generated by supercurrent, Nucl. Phys. B 124 (1977) 309 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Ferrara and B. Zumino, Structure of conformal supergravity, Nucl. Phys. B 134 (1978) 301 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    M.F. Sohnius and P.C. West, An alternative minimal off-shell version of N = 1 supergravity, Phys. Lett. B 105 (1981) 353 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    V. Akulov, D. Volkov and V. Soroka, Generally covariant theories of gauge fields on superspace, Theor. Math. Phys. 31 (1977) 285 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  37. [37]
    P. Breitenlohner, A geometric interpretation of local supersymmetry, Phys. Lett. B 67 (1977) 49 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P. Breitenlohner, Some invariant Lagrangians for local supersymmetry, Nucl. Phys. B 124 (1977) 500 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    W. Siegel and S.J. Gates Jr., Superfield supergravity, Nucl. Phys. B 147 (1979) 77 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S.J. Gates Jr. and W. Siegel, Understanding constraints in superspace formulations of supergravity, Nucl. Phys. B 163 (1980) 519 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    S. Ferrara, L. Girardello, T. Kugo and A. Van Proeyen, Relation between different auxiliary field formulations of N = 1 supergravity coupled to matter, Nucl. Phys. B 223 (1983) 191 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Kugo and S. Uehara, N = 1 superconformal tensor calculus: multiplets with external Lorentz indices and spinor derivative operators, Prog. Theor. Phys. 73 (1985) 235 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  43. [43]
    I. Buchbinder, S. Kuzenko and O. Solovev, One loop counterterms of Wess-Zumino model in the N = 1 nonminimal supergravity background, Nucl. Phys. B 322 (1989) 277 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    W. Siegel, Gauge spinor superfield as a scalar multiplet, Phys. Lett. B 85 (1979) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    B. de Wit and M. Roček, Improved tensor multiplets, Phys. Lett. B 109 (1982) 439 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    P. Binetruy, G. Girardi and R. Grimm, Supergravity couplings: a geometric formulation, Phys. Rept. 343 (2001) 255 [hep-th/0005225] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  47. [47]
    D. Butter and S.M. Kuzenko, A dual formulation of supergravity-matter theories, Nucl. Phys. B 854 (2012) 1 [arXiv:1106.3038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    M. Kaku and P. Townsend, Poincaré supergravity as broken superconformal gravity, Phys. Lett. B 76 (1978) 54 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    M. Kaku, P. Townsend and P. van Nieuwenhuizen, Properties of conformal supergravity, Phys. Rev. D 17 (1978) 3179 [INSPIRE].ADSGoogle Scholar
  50. [50]
    P. Townsend and P. van Nieuwenhuizen, Simplifications of conformal supergravity, Phys. Rev. D 19 (1979) 3166 [INSPIRE].ADSGoogle Scholar
  51. [51]
    S. Ferrara, M.T. Grisaru and P. van Nieuwenhuizen, Poincaré and conformal supergravity models with closed algebras, Nucl. Phys. B 138 (1978) 430 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    T. Kugo and S. Uehara, Conformal and Poincaré tensor calculi in N = 1 supergravity, Nucl. Phys. B 226 (1983) 49 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    S. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, 4D N = 2 supergravity and projective superspace, JHEP 09 (2008) 051 [arXiv:0805.4683] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Super-Weyl invariance in 5D supergravity, JHEP 04 (2008) 032 [arXiv:0802.3953] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    S.M. Kuzenko, U. Lindström and G. Tartaglino-Mazzucchelli, Off-shell supergravity-matter couplings in three dimensions, JHEP 03 (2011) 120 [arXiv:1101.4013] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    W.D. Linch III, and G. Tartaglino-Mazzucchelli, Six-dimensional supergravity and projective superfields, JHEP 08 (2012) 075 [arXiv:1204.4195] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    P.S. Howe, Supergravity in superspace, Nucl. Phys. B 199 (1982) 309 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    D. Butter, N = 1 conformal superspace in four dimensions, Annals Phys. 325 (2010) 1026 [arXiv:0906.4399] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  59. [59]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric field theories on three-manifolds, arXiv:1212.3388 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.School of Physics M013The University of Western AustraliaCrawleyAustralia

Personalised recommendations