Instantons and Killing spinors

  • Derek HarlandEmail author
  • Christoph Nölle


We investigate instantons on manifolds with Killing spinors and their cones. Examples of manifolds with Killing spinors include nearly Kähler 6-manifolds, nearly parallel G 2-manifolds in dimension 7, Sasaki-Einstein manifolds, and 3-Sasakian manifolds. We construct a connection on the tangent bundle over these manifolds which solves the instanton equation, and also show that the instanton equation implies the Yang-Mills equation, despite the presence of torsion. We then construct instantons on the cones over these manifolds, and lift them to solutions of heterotic supergravity. Amongst our solutions are new instantons on even-dimensional Euclidean spaces, as well as the well-known BPST, quaternionic and octonionic instantons.


Solitons Monopoles and Instantons Supergravity Models Differential and Algebraic Geometry Supersymmetric gauge theory 


  1. [1]
    E. Corrigan, C. Devchand, D. Fairlie and J. Nuyts, First order equations for gauge fields in spaces of dimension greater than four, Nucl. Phys. B 214 (1983) 452 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    R.S. Ward, Completely solvable gauge field equations in dimension greater than four, Nucl. Phys. B 236 (1984) 381 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S.K. Donaldson and R.P. Thomas, Gauge theory in higher dimensions, in The geometric universe, S. Hugett et al. eds., Oxford University Press, Oxford U.K. (1998).Google Scholar
  4. [4]
    S. Donaldson and E. Segal, Gauge theory in higher dimensions, II, arXiv:0902.3239 [INSPIRE].
  5. [5]
    G. Tian, Gauge theory and calibrated geometry, Ann. Math. 151 (2000) 193 [math/0010015].zbMATHCrossRefGoogle Scholar
  6. [6]
    D. Fairlie and J. Nuyts, Spherically symmetric solutions of gauge theories in eight-dimensions, J. Phys. A 17 (1984) 2867 [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    S. Fubini and H. Nicolai, The octonionic instanton, Phys. Lett. B 155 (1985) 369 [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    E. Corrigan, P. Goddard and A. Kent, Some comments on the ADHM construction in 4k dimensions, Commun. Math. Phys. 100 (1985) 1.MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. [9]
    T. Ivanova and A. Popov, Selfdual Yang-Mills fields in D = 7, 8, octonions and Ward equations, Lett. Math. Phys. 24 (1992) 85 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [10]
    T. Ivanova and A. Popov, (Anti)selfdual gauge fields in dimension d ≥ 4, Theor. Math. Phys. 94 (1993) 225 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  11. [11]
    J. Broedel, T.A. Ivanova and O. Lechtenfeld, Construction of noncommutative instantons in 4k dimensions, Mod. Phys. Lett. A 23 (2008) 179 [hep-th/0703009] [INSPIRE].ADSGoogle Scholar
  12. [12]
    D. Harland, T.A. Ivanova, O. Lechtenfeld and A.D. Popov, Yang-Mills flows on nearly Kähler manifolds and G 2-instantons, Commun. Math. Phys. 300 (2010) 185 [arXiv:0909.2730] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [13]
    D. Harland and A.D. Popov, Yang-Mills fields in flux compactifications on homogeneous manifolds with SU(4)-structure, JHEP 02 (2012) 107 [arXiv:1005.2837] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A.S. Haupt, T.A. Ivanova, O. Lechtenfeld and A.D. Popov, Chern-Simons flows on Aloff-Wallach spaces and Spin(7)-instantons, Phys. Rev. D 83 (2011) 105028 [arXiv:1104.5231] [INSPIRE].ADSGoogle Scholar
  15. [15]
    K.-P. Gemmer, O. Lechtenfeld, C. Nölle and A.D. Popov, Yang-Mills instantons on cones and sine-cones over nearly Kähler manifolds, JHEP 09 (2011) 103 [arXiv:1108.3951] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    F. Xu, On instantons on nearly Kähler 6-manifolds, Asian J. Math. 13 (2009) 535.MathSciNetzbMATHGoogle Scholar
  17. [17]
    F.P. Correia, Hermitian Yang-Mills instantons on Calabi-Yau cones, JHEP 12 (2009) 004 [arXiv:0910.1096] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    F.P. Correia, Hermitian Yang-Mills instantons on resolutions of Calabi-Yau cones, JHEP 02 (2011) 054 [arXiv:1009.0526] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    B.S. Acharya, J. Figueroa-O’Farrill, C. Hull and B.J. Spence, Branes at conical singularities and holography, Adv. Theor. Math. Phys. 2 (1999) 1249 [hep-th/9808014] [INSPIRE].MathSciNetGoogle Scholar
  20. [20]
    P. Koerber, D. Lüst and D. Tsimpis, Type IIA AdS 4 compactifications on cosets, interpolations and domain walls, JHEP 07 (2008) 017 [arXiv:0804.0614] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C. Bär, Real Killing spinors and holonomy, Commun. Math. Phys. 154 (1993) 509.ADSzbMATHCrossRefGoogle Scholar
  22. [22]
    J.P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general supersymmetric AdS solutions, Phys. Rev. D 76 (2007) 126007 [arXiv:0707.2315] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    A. Strominger, Heterotic solitons, Nucl. Phys. B 343 (1990) 167 [Erratum ibid. B 353 (1991) 565] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    J.A. Harvey and A. Strominger, Octonionic superstring solitons, Phys. Rev. Lett. 66 (1991) 549 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. [25]
    M. Günaydin and H. Nicolai, Seven-dimensional octonionic Yang-Mills instanton and its extension to an heterotic string soliton, Phys. Lett. B 351 (1995) 169 [Addendum ibid. B 376 (1996) 329] [hep-th/9502009] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Belavin, A.M. Polyakov, A. Schwartz and Y. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975) 85 [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    C. Nölle, Homogeneous heterotic supergravity solutions with linear dilaton, J. Phys. A A 45 (2012) 045402 [arXiv:1011.2873] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C.G. Callan Jr., J.A. Harvey and A. Strominger, World sheet approach to heterotic instantons and solitons, Nucl. Phys. B 359 (1991) 611 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    C.G. Callan Jr., J.A. Harvey and A. Strominger, Supersymmetric string solitons, hep-th/9112030 [INSPIRE].
  30. [30]
    O. Hijazi, A conformal lower bound on the smallest eigenvalue of the Dirac operator and Killing spinors, Commun. Math. Phys. 104 (1986) 151.MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. [31]
    H. Baum, T. Friedrich, R. Grunewald and I. Kath, Twistor and Killing spinors on Riemannian manifolds, Teubner-Verlag, Germany (1991).Google Scholar
  32. [32]
    S.K. Donaldson, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc. 50 (1985) 1.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    S.K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987) 231.MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    K.K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Commun. Pure Appl. Math. 39 (1986) 257.MathSciNetCrossRefGoogle Scholar
  35. [35]
    K.K. Uhlenbeck and S.-T. Yau, A note on our previous paper, Commun. Pure Appl. Math. 42 (1989) 703.MathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    T. Friedrich and S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2002) 303 [math/0102142].MathSciNetzbMATHGoogle Scholar
  37. [37]
    I. Agricola, The Srni lectures on non-integrable geometries with torsion, Arch. Math. 42 (2006) 5 [math/0606705].MathSciNetzbMATHGoogle Scholar
  38. [38]
    T. Friedrich, I. Kath, A. Moroianu and U. Semmelmann, On nearly parallel G2-structures, J. Geom. Phys. 23 (1997) 259.MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. [39]
    W. Ziller, Examples of riemannian manifolds with non-negative sectional curvature, math/0701389.
  40. [40]
    L. Verdiani and W. Ziller, Positively curved homogeneous metrics on spheres, Math. Z. 261 (2009) 473 [arXiv:0707.3056] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    O. Dearricott, Positive sectional curvature on 3-Sasakian manifolds, Ann. Global Anal. Geom. 25 (2004) 59.MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    C.P. Boyer and K. Galicki, Sasakian geometry, Oxford University Press, Oxford U.K. (2008).zbMATHGoogle Scholar
  43. [43]
    J.B. Butruille, Homogeneous nearly Kähler manifolds, in Handbook of pseudo-riemannian geometry and supersymmetry, V. Cortés ed., European Mathematical Society (2010), math/0612655.
  44. [44]
    M. Fernández, S. Ivanov, V. Muñoz and L. Ugarte, Nearly hypo structures and compact nearly Kähler 6-manifolds with conical singularities, math/0602160.
  45. [45]
    J. Sparks, Sasaki-Einstein Manifolds, Surveys Diff. Geom. 16 (2011) 265 [arXiv:1004.2461] [INSPIRE].MathSciNetGoogle Scholar
  46. [46]
    D. Fabbri et al., 3D superconformal theories from Sasakian seven manifolds: new nontrivial evidences for AdS 4 /CF T 3, Nucl. Phys. B 577 (2000) 547 [hep-th/9907219] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    L. Castellani, R. D’Auria and P. Fré, SU(3) × SU(2) × U(1) from D = 11 supergravity, Nucl. Phys. B 239 (1984) 610 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S 2 × S 3, Adv. Theor. Math. Phys. 8 (2004) 711 [hep-th/0403002].MathSciNetzbMATHGoogle Scholar
  49. [49]
    C.P. Boyer and K. Galicki, Sasakian geometry and Einstein metrics on spheres, CRM Proc. Lecture Notes 40 (2006) 47 [math/0505221].MathSciNetGoogle Scholar
  50. [50]
    C.P. Boyer and K. Galicki, Einstein metrics on rational homology spheres, J. Diff. Geom. 74 (2006) 353 [math/0311355].MathSciNetzbMATHGoogle Scholar
  51. [51]
    J.P. Gauntlett, D. Martelli, J.F. Sparks and D. Waldram, A new infinite class of Sasaki-Einstein manifolds, Adv. Theor. Math. Phys. 8 (2006) 987 [hep-th/0403038] [INSPIRE].MathSciNetGoogle Scholar
  52. [52]
    M. Cvetič, H. Lü, D.N. Page and C. Pope, New Einstein-Sasaki spaces in five and higher dimensions, Phys. Rev. Lett. 95 (2005) 071101 [hep-th/0504225] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    H. Lü, C. Pope and J.F. Vazquez-Poritz, A new construction of Einstein-Sasaki metrics in D ≥ 7,Phys. Rev. D 75 (2007) 026005 [hep-th/0512306] [INSPIRE].ADSGoogle Scholar
  54. [54]
    I. Agricola and T. Friedrich, 3-Sasakian manifolds in dimension seven, their spinors and G 2 structures, J. Geom. Phys. 60 (2010) 326 [arXiv:0812.1651].MathSciNetADSzbMATHCrossRefGoogle Scholar
  55. [55]
    C.P. Boyer and K. Galicki, 3-Sasakian manifolds, Surveys Diff. Geom. 7 (1999) 123 [hep-th/9810250] [INSPIRE].MathSciNetGoogle Scholar
  56. [56]
    J.H. Eschenburg, New examples of manifolds with strictly positive curvature, Invent. Math. 66 (1982) 469.MathSciNetADSzbMATHCrossRefGoogle Scholar
  57. [57]
    C. LeBrun and S. Salamon, Strong rigidity of positive quaternion-Kähler manifolds, Invent. Math. 118 (1994) 109.MathSciNetADSzbMATHCrossRefGoogle Scholar
  58. [58]
    S. Kobayashi and K. Nomizu, Foundations of differential geometry, volume 1, Interscience Publishers, U.S.A. (1963).Google Scholar
  59. [59]
    T.A. Ivanova, O. Lechtenfeld, A.D. Popov and T. Rahn, Instantons and Yang-Mills Flows on coset spaces, Lett. Math. Phys. 89 (2009) 231 [arXiv:0904.0654] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    E. Bergshoeff and M. de Roo, The quartic effective action of the heterotic string and supersymmetry, Nucl. Phys. B 328 (1989) 439 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Ivanov, Heterotic supersymmetry, anomaly cancellation and equations of motion, Phys. Lett. B 685 (2010) 190 [arXiv:0908.2927] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Mathematical SciencesDurham UniversityDurhamUK
  2. 2.Institut für Theoretische PhysikLeibniz Universität HannoverHannoverGermany

Personalised recommendations