Phenomenology and cosmology of an electroweak pseudo-dilaton and electroweak baryons

Open Access


In many strongly-interacting models of electroweak symmetry breaking the lowest-lying observable particle is a pseudo-Goldstone boson of approximate scale symmetry, the pseudo-dilaton. Its interactions with Standard Model particles can be described using a low-energy effective nonlinear chiral Lagrangian supplemented by terms that restore approximate scale symmetry, yielding couplings of the pseudo-dilaton that differ from those of a Standard Model Higgs boson by fixed factors. We review the experimental constraints on such a pseudo-dilaton in light of new data from the LHC and elsewhere. The effective nonlinear chiral Lagrangian has Skyrmion solutions that may be identified with the ‘electroweak baryons’ of the underlying strongly-interacting theory, whose nature may be revealed by the properties of the Skyrmions. We discuss the finite-temperature electroweak phase transition in the low-energy effective theory, finding that the possibility of a first-order electroweak phase transition is resurrected. We discuss the evolution of the Universe during this transition and derive an order-of-magnitude lower limit on the abundance of electroweak baryons in the absence of a cosmological asymmetry, which suggests that such an asymmetry would be necessary if the electroweak baryons are to provide the cosmological density of dark matter. We revisit estimates of the corresponding spin-independent dark matter scattering cross section, with a view to direct detection experiments.


Higgs Physics Cosmology of Theories beyond the SM Technicolor and Composite Models 


  1. [1]
    CMS collaboration, Combined Standard Model Higgs boson searches with up to 2.3 fb−1 of pp collision data at \( \sqrt {s} = 7\,TeV \) at the LHC, PAS-HIG-11-023, CERN, Geneva Switzerland (2011).Google Scholar
  2. [2]
    ATLAS collaboration, Combined Standard Model Higgs boson searches with up to 2.3 fb−1 of pp collisions at \( \sqrt {s} = 7\,TeV \) at the LHC, ATLAS-CONF-2011-157, CERN, Geneva Switzerland (2011).Google Scholar
  3. [3]
    ATLAS, CMS and LHC Higgs Combination Group collaborations, L. Rolandi, Higgsstatus and combinations, &sessionId = 19&resId = 0&materialId = slides&confId = 6004.
  4. [4]
    M. Veltman, Second threshold in weak interactions, Acta Phys. Polon. B 8 (1977) 475 [INSPIRE].Google Scholar
  5. [5]
    C.E. Vayonakis, New threshold of weak interactions, preprint University of Athens, Athens Greece (1977) [INSPIRE].
  6. [6]
    B.W. Lee, C. Quigg and H. Thacker, The strength of weak interactions at very high-energies and the Higgs boson mass, Phys. Rev. Lett. 38 (1977) 883 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    B.W. Lee, C. Quigg and H. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  8. [8]
    LEP Electroweak Working Group webpage,
  9. [9]
    Gfitter collaboration, M. Baak et al., Updated status of the global electroweak fit and constraints on new physics, arXiv:1107.0975 [INSPIRE].
  10. [10]
    G. Altarelli and G. Isidori, Lower limit on the Higgs mass in the Standard Model: an update, Phys. Lett. B 337 (1994) 141 [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Casas, J. Espinosa and M. Quirós, Improved Higgs mass stability bound in the Standard Model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Ellis, J. Espinosa, G. Giudice, A. Hoecker and A. Riotto, The probable fate of the Standard Model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J.R. Ellis and D. Ross, A light Higgs boson would invite supersymmetry, Phys. Lett. B 506 (2001) 331 [hep-ph/0012067] [INSPIRE].ADSGoogle Scholar
  14. [14]
    C. Csáki, J. Hubisz and S.J. Lee, Radion phenomenology in realistic warped space models, Phys. Rev. D 76 (2007) 125015 [arXiv:0705.3844] [INSPIRE].ADSGoogle Scholar
  15. [15]
    W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Fan, W.D. Goldberger, A. Ross and W. Skiba, Standard Model couplings and collider signatures of a light scalar, Phys. Rev. D 79 (2009) 035017 [arXiv:0803.2040] [INSPIRE].ADSGoogle Scholar
  17. [17]
    K. Yamawaki, Walking over the composites: in the spirit of Sakata, Prog. Theor. Phys. Suppl. 167 (2007) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    K. Yamawaki, Quest for the dynamical origin of mass: an LHC perspective from Sakata, Nambu and Maskawa, Prog. Theor. Phys. Suppl. 180 (2010) 1 [arXiv:0907.5277] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    K. Yamawaki, Conformal Higgs, or techni-dilaton-composite Higgs near conformality, Int. J. Mod. Phys. A 25 (2010) 5128 [arXiv:1008.1834] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Matsuzaki and K. Yamawaki, Techni-dilaton signatures at LHC, arXiv:1109.5448 [INSPIRE].
  21. [21]
    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Contino, Tasi 2009 lectures: the Higgs as a composite Nambu-Goldstone boson, arXiv:1005.4269 [INSPIRE].
  24. [24]
    R. Contino, Hunting the composite Higgs, talk at the Higgs Hunting Workshop,, Orsay France July 28-30 2011.
  25. [25]
    S. Weinberg, Nonlinear realizations of chiral symmetry, Phys. Rev. 166 (1968) 1568 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE]. ADSCrossRefGoogle Scholar
  28. [28]
    A. Salam and J. Strathdee, Nonlinear realizations. 2. Conformal symmetry, Phys. Rev. 184 (1969) 1760 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J.R. Ellis, Aspects of conformal symmetry and chirality, Nucl. Phys. B 22 (1970) 478 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Appelquist and C.W. Bernard, Strongly interacting Higgs bosons, Phys. Rev. D 22 (1980) 200 [INSPIRE].ADSGoogle Scholar
  31. [31]
    B. Grinstein, Strong electroweak symmetry breaking, arXiv:1102.4009 [INSPIRE].
  32. [32]
    J. Andersen et al., Discovering technicolor, Eur. Phys. J. Plus 126 (2011) 81 [arXiv:1104.1255] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    K. Yamawaki, M. Bando and K.-I. Matumoto, Scale invariant technicolor model and a technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Bando, K.-I. Matumoto and K. Yamawaki, Technidilaton, Phys. Lett. B 178 (1986) 308 [INSPIRE].ADSGoogle Scholar
  35. [35]
    D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: predictions for CERN LHC, Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Hashimoto and K. Yamawaki, Techni-dilaton at conformal edge, Phys. Rev. D 83 (2011) 015008 [arXiv:1009.5482] [INSPIRE].ADSGoogle Scholar
  37. [37]
    T. Appelquist and Y. Bai, A light dilaton in walking gauge theories, Phys. Rev. D 82 (2010) 071701 [arXiv:1006.4375] [INSPIRE].ADSGoogle Scholar
  38. [38]
    B. Grinstein and P. Uttayarat, A very light dilaton, JHEP 07 (2011) 038 [arXiv:1105.2370] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Delgado, K. Lane and A. Martin, A light scalar in low-scale technicolor, Phys. Lett. B 696 (2011) 482 [arXiv:1011.0745] [INSPIRE].ADSGoogle Scholar
  40. [40]
    O. Antipin, M. Mojaza and F. Sannino, Light dilaton at fixed points and ultra light scale super Yang-Mills, arXiv:1107.2932 [INSPIRE].
  41. [41]
    B. Grinstein and P. Uttayarat, A very light dilaton, JHEP 07 (2011) 038 [arXiv:1105.2370] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R. Crewther, Broken scale invariance in the width of a single dilaton, Phys. Lett. B 33 (1970) 305 [INSPIRE].ADSGoogle Scholar
  43. [43]
    R. Crewther, Nonperturbative evaluation of the anomalies in low-energy theorems, Phys. Rev. Lett. 28 (1972) 1421 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M.S. Chanowitz and J.R. Ellis, Canonical anomalies and broken scale invariance, Phys. Lett. B 40 (1972) 397 [INSPIRE].ADSGoogle Scholar
  45. [45]
    M.S. Chanowitz and J.R. Ellis, Canonical trace anomalies, Phys. Rev. D 7 (1973) 2490 [INSPIRE].ADSGoogle Scholar
  46. [46]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSGoogle Scholar
  47. [47]
    B. Campbell, J.R. Ellis and K.A. Olive, Effective Lagrangian approach to QCD phase transitions, Phys. Lett. B 235 (1990) 325 [INSPIRE].ADSGoogle Scholar
  48. [48]
    B.A. Campbell, J.R. Ellis and K.A. Olive, QCD phase transitions in an effective field theory, Nucl. Phys. B 345 (1990) 57 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    T. Skyrme, A nonlinear field theory, Proc. Roy. Soc. Lond. A 260 (1961) 127 [INSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    T. Skyrme, A unified field theory of mesons and baryons, Nucl. Phys. 31 (1962) 556 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  51. [51]
    J.M. Cline, M. Jarvinen and F. Sannino, The electroweak phase transition in nearly conformal technicolor, Phys. Rev. D 78 (2008) 075027 [arXiv:0808.1512] [INSPIRE].ADSGoogle Scholar
  52. [52]
    F. Sannino, Conformal dynamics for TeV physics and cosmology, Acta Phys. Polon. B 40 (2009)3533 [arXiv:0911.0931] [INSPIRE].Google Scholar
  53. [53]
    R. Chivukula and T.P. Walker, Technicolor cosmology, Nucl. Phys. B 329 (1990) 445 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Nussinov, Technocosmology: could a technibaryon excess provide anaturalmissing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].ADSGoogle Scholar
  55. [55]
    J. Bagnasco, M. Dine and S.D. Thomas, Detecting technibaryon dark matter, Phys. Lett. B 320 (1994) 99 [hep-ph/9310290] [INSPIRE].ADSGoogle Scholar
  56. [56]
    M. Gell-Mann and M. Levy, The axial vector current in β decay, Nuovo Cim. 16 (1960) 705 [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  57. [57]
    M. Gell-Mann, R. Oakes and B. Renner, Behavior of current divergences under SU(3) × SU(3), Phys. Rev. 175 (1968) 2195 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Schechter, Effective Lagrangian with two color singlet gluon fields, Phys. Rev. D 21 (1980) 3393 [INSPIRE].ADSGoogle Scholar
  59. [59]
    A. Salomone, J. Schechter and T. Tudron, Properties of scalar gluonium, Phys. Rev. D 23 (1981) 1143 [INSPIRE].ADSGoogle Scholar
  60. [60]
    A.A. Migdal and M.A. Shifman, Dilaton effective Lagrangian in gluodynamics, Phys. Lett. B 114 (1982) 445 [INSPIRE].ADSGoogle Scholar
  61. [61]
    J.R. Ellis and J. Lanik, Is scalar gluonium observable?, Phys. Lett. B 150 (1985) 289 [INSPIRE].ADSGoogle Scholar
  62. [62]
    F. Gianotti et al., Physics potential and experimental challenges of the LHC luminosity upgrade, Eur. Phys. J. C 39 (2005) 293 [hep-ph/0204087] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    CLIC Physics Working Group collaboration, E. Accomando et al., Physics at the CLIC multi-TeV linear collider, hep-ph/0412251 [INSPIRE].
  64. [64]
    M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].Google Scholar
  65. [65]
    R. Gastmans, S.L. Wu and T.T. Wu, Higgs decay H → γγ through a W loop: difficulty with dimensional regularization, arXiv:1108.5322 [INSPIRE].
  66. [66]
    R. Gastmans, S.L. Wu and T.T. Wu, Higgs decay into two photons, revisited, arXiv:1108.5872 [INSPIRE].
  67. [67]
    K. Fujikawa, B. Lee and A. Sanda, Generalized renormalizable gauge formulation of spontaneously broken gauge theories, Phys. Rev. D 6 (1972) 2923 [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Shifman, A. Vainshtein, M. Voloshin and V. Zakharov, Higgs decay into two photons through the W -boson loop: no decoupling in the mW → 0 limit, Phys. Rev. D 85 (2012) 013015 [arXiv:1109.1785] [INSPIRE].ADSGoogle Scholar
  69. [69]
    D. Huang, Y. Tang and Y.-L. Wu, Note on Higgs decay into two photons H → γγ, arXiv:1109.4846 [INSPIRE].
  70. [70]
    W.J. Marciano, C. Zhang and S. Willenbrock, Higgs decay to two photons, Phys. Rev. D 85 (2012) 013002 [arXiv:1109.5304] [INSPIRE].ADSGoogle Scholar
  71. [71]
    F. Jegerlehner, Comment on Hγγ and the role of the decoupling theorem and the equivalence theorem, arXiv:1110.0869 [INSPIRE].
  72. [72]
    H.-S. Shao, Y.-J. Zhang and K.-T. Chao, Higgs decay into two photons and reduction schemes in cutoff regularization, JHEP 01 (2012) 053 [arXiv:1110.6925] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  75. [75]
    G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].ADSGoogle Scholar
  76. [76]
    R. Foadi and F. Sannino, WW scattering in walking technicolor: no discovery scenarios at the CERN LHC and ILC, Phys. Rev. D 78 (2008) 037701 [arXiv:0801.0663] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    K. Haba, S. Matsuzaki and K. Yamawaki, S parameter in the holographic walking/conformal technicolor, Prog. Theor. Phys. 120 (2008) 691 [arXiv:0804.3668] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  78. [78]
    R. Foadi, M. Jarvinen and F. Sannino, Unitarity in technicolor, Phys. Rev. D 79 (2009) 035010 [arXiv:0811.3719] [INSPIRE].ADSGoogle Scholar
  79. [79]
    A. Falkowski, C. Grojean, A. Kaminska, S. Pokorski and A. Weiler, If no Higgs then what?, JHEP 11 (2011) 028 [arXiv:1108.1183] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    M. Gillioz, A. von Manteuffel, P. Schwaller and D. Wyler, The little skyrmion: new dark matter for little Higgs models, JHEP 03 (2011) 048 [arXiv:1012.5288] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    E. Witten, Current algebra, baryons and quark confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    J.R. Ellis and M. Karliner, An analysis of the angular momentum of the proton, Phys. Lett. B 213 (1988) 73 [INSPIRE].ADSGoogle Scholar
  83. [83]
    G. Dvali, G.F. Giudice, C. Gomez and A. Kehagias, UV-completion by classicalization, JHEP 08 (2011) 108 [arXiv:1010.1415] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    C. Grojean and R.S. Gupta, Theory and LHC phenomenology of classicalon decays, arXiv:1110.5317 [INSPIRE].
  85. [85]
    J. Gasser and H. Leutwyler, Light quarks at low temperatures, Phys. Lett. B 184 (1987) 83 [INSPIRE].ADSGoogle Scholar
  86. [86]
    J. Gasser and H. Leutwyler, Thermodynamics of chiral symmetry, Phys. Lett. B 188 (1987) 477 [INSPIRE].ADSGoogle Scholar
  87. [87]
    T. Konstandin and G. Servant, Cosmological consequences of nearly conformal dynamics at the TeV scale, JCAP 12 (2011) 009 [arXiv:1104.4791] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    T. Konstandin and G. Servant, Natural cold baryogenesis from strongly interacting electroweak symmetry breaking, JCAP 07 (2011) 024 [arXiv:1104.4793] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    A.H. Guth and E.J. Weinberg, Could the universe have recovered from a slow first order phase transition?, Nucl. Phys. B 212 (1983) 321 [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    L. Randall and G. Servant, Gravitational waves from warped spacetime, JHEP 05 (2007) 054 [hep-ph/0607158] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  91. [91]
    T. Konstandin, G. Nardini and M. Quirós, Gravitational backreaction effects on the holographic phase transition, Phys. Rev. D 82 (2010) 083513 [arXiv:1007.1468] [INSPIRE].ADSGoogle Scholar
  92. [92]
    E. D’Hoker and E. Farhi, The decay of the skyrmion, Phys. Lett. B 134 (1984) 86 [INSPIRE].ADSGoogle Scholar
  93. [93]
    T. Kibble, Topology of cosmic domains and strings, J. Phys. A 9 (1976) 1387 [INSPIRE].ADSGoogle Scholar
  94. [94]
    W. Zurek, Cosmological experiments in superfluid helium?, Nature 317 (1985) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    H. Murayama and J. Shu, Topological dark matter, Phys. Lett. B 686 (2010) 162 [arXiv:0905.1720] [INSPIRE].ADSGoogle Scholar
  96. [96]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE] and references therein.ADSCrossRefGoogle Scholar
  97. [97]
    M. Gillioz, Dangerous skyrmions in little Higgs models, JHEP 02 (2012) 121 [arXiv:1111.2047] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    J.R. Ellis, V. Mayes and D.V. Nanopoulos, Flipped cryptons and the UHECRs, Phys. Rev. D 70 (2004) 075015 [hep-ph/0403144] [INSPIRE].ADSGoogle Scholar
  99. [99]
    M. Pospelov, Particle physics catalysis of thermal big bang nucleosynthesis, Phys. Rev. Lett. 98 (2007) 231301 [hep-ph/0605215] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    R. Foadi, M.T. Frandsen and F. Sannino, Technicolor dark matter, Phys. Rev. D 80 (2009) 037702 [arXiv:0812.3406] [INSPIRE].ADSGoogle Scholar
  101. [101]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE] and references therein.ADSCrossRefGoogle Scholar
  102. [102]
    R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].ADSGoogle Scholar
  103. [103]
    M.A. Shifman, A. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. B 78 (1978) 443 [INSPIRE].ADSGoogle Scholar
  104. [104]
    J.R. Ellis, K.A. Olive and C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [INSPIRE].ADSGoogle Scholar
  105. [105]
    H. de Sandes and R. Rosenfeld, Radion-Higgs mixing effects on bounds from LHC Higgs searches, arXiv:1111.2006 [INSPIRE].
  106. [106]
    V. Barger, M. Ishida and W.-Y. Keung, Dilaton at the LHC, Phys. Rev. D 85 (2012) 015024 [arXiv:1111.2580] [INSPIRE].ADSGoogle Scholar
  107. [107]
    B. Coleppa, T. Gregoire and H.E. Logan, Dilaton constraints and LHC prospects, arXiv:1111.3276 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Bruce A. Campbell
    • 1
    • 2
  • John Ellis
    • 3
    • 2
  • Keith A. Olive
    • 4
  1. 1.Department of PhysicsCarleton UniversityOttawaCanada
  2. 2.TH Division, Physics Department, CERNGeneva 23Switzerland
  3. 3.Theoretical Particle Physics and Cosmology Group, Physics DepartmentKing’s College LondonLondonU.K.
  4. 4.William I. Fine Theoretical Physics InstituteUniversity of MinnesotaMinneapolisU.S.A.

Personalised recommendations