Advertisement

Towards non-AdS holography in 3-dimensional higher spin gravity

  • Michael Gary
  • Daniel Grumiller
  • Radoslav Rashkov
Article

Abstract

We take the first steps towards non-AdS holography in higher spin gravity. Namely, we propose a variational principle for generic 3-dimensional higher spin gravity that accommodates asymptotic backgrounds beyond AdS, like asymptotically Schrödinger, Lifshitz or warped AdS spacetimes. As examples we study in some detail the four sl(2) embeddings of spin-4 gravity and provide associated geometries, including an asymptotic Lifshitz black hole.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Chern-Simons Theories Conformal and W Symmetry 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133 [hep-th/9711200] [INSPIRE].
  2. [2]
    N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [INSPIRE].
  4. [4]
    E. Fradkin and M.A. Vasiliev, Cubic interaction in extended theories of massless higher spin fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    E. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].ADSGoogle Scholar
  6. [6]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    M. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].
  9. [9]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  10. [10]
    I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    S. Giombi and X. Yin, Higher spins in AdS and twistorial holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CF T 3 construction from collective fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S. Giombi and X. Yin, On higher spin gauge theory and the critical O(N) model, arXiv:1105.4011 [INSPIRE].
  15. [15]
    M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition functions of holographic minimal models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    C. Aragone and S. Deser, Hypersymmetry in D = 3 of coupled gravity massless spin 5/2 system, Class. Quant. Grav. 1 (1984) L9 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    M. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    E. Bergshoeff, M. Blencowe and K. Stelle, Area preserving diffeomorphisms and higher spin algebra, Commun. Math. Phys. 128 (1990) 213 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    A. Achucarro and P. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    S. Carlip, Lectures on (2 + 1) dimensional gravity, J. Korean Phys. Soc. 28 (1995) S447 [gr-qc/9503024] [INSPIRE].Google Scholar
  24. [24]
    F. Bais, T. Tjin and P. van Driel, Covariantly coupled chiral algebras, Nucl. Phys. B 357 (1991) 632 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    J. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  27. [27]
    M. Henneaux and S.-J. Rey, Nonlinear W infinity as asymptotic symmetry of three-dimensional higher spin Anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    D. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    A. Adams, K. Balasubramanian and J. McGreevy, Hot spacetimes for cold atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    D. Grumiller and N. Johansson, Instability in cosmological topologically massive gravity at the chiral point, JHEP 07 (2008) 134 [arXiv:0805.2610] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Ertl, D. Grumiller and N. Johansson, Erratum toInstability in cosmological topologically massive gravity at the chiral pointarXiv:0805.2610, arXiv:0910.1706.
  34. [34]
    D. Grumiller and N. Johansson, Consistent boundary conditions for cosmological topologically massive gravity at the chiral point, Int. J. Mod. Phys. D 17 (2009) 2367 [arXiv:0808.2575] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    M. Henneaux, C. Martinez and R. Troncoso, Asymptotically anti-de Sitter spacetimes in topologically massive gravity, Phys. Rev. D 79 (2009) 081502 [arXiv:0901.2874] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    A. Maloney, W. Song and A. Strominger, Chiral gravity, log gravity and extremal CFT, Phys. Rev. D 81 (2010) 064007 [arXiv:0903.4573] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    S. Deser, R. Jackiw and S. Templeton, Three-dimensional massive gauge theories, Phys. Rev. Lett. 48 (1982) 975 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].Google Scholar
  39. [39]
    J.H. Horne and E. Witten, Conformal gravity in three-dimensions as a gauge theory, Phys. Rev. Lett. 62 (1989) 501 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    H. Afshar, B. Cvetkovic, S. Ertl, D. Grumiller and N. Johansson, Holograms of conformal Chern-Simons gravity, Phys. Rev. D 84 (2011) 041502 [arXiv:1106.6299] [INSPIRE].ADSGoogle Scholar
  41. [41]
    H. Afshar, B. Cvetkovic, S. Ertl, D. Grumiller and N. Johansson, Conformal Chern-Simons holographylock, stock and barrel, arXiv:1110.5644 [INSPIRE].
  42. [42]
    M. Bañados, Global charges in Chern-Simons field theory and the (2 + 1) black hole, Phys. Rev. D 52 (1996) 5816 [hep-th/9405171] [INSPIRE].Google Scholar
  43. [43]
    M. Bañados, T. Brotz and M.E. Ortiz, Boundary dynamics and the statistical mechanics of the (2 + 1)-dimensional black hole, Nucl. Phys. B 545 (1999) 340 [hep-th/9802076] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Bañados, Three-dimensional quantum geometry and black holes, [INSPIRE].
  45. [45]
    S. Carlip, Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  46. [46]
    P. Kraus, Lectures on black holes and the AdS 3 /CF T 2 correspondence, Lect. Notes Phys. 755 (2008)193 [hep-th/0609074] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, Black holes and singularity resolution in higher spin gravity, JHEP 01 (2012) 031 [arXiv:1110.4117] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    O. Coussaert, M. Henneaux and P. van Driel, The Asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  50. [50]
    Y. Nutku, Exact solutions of topologically massive gravity with a cosmological constant, Class. Quant. Grav. 10 (1993) 2657 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    I. Bengtsson and P. Sandin, Anti de Sitter space, squashed and stretched, Class. Quant. Grav. 23 (2006) 971 [gr-qc/0509076] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  52. [52]
    D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS 3 black holes, JHEP 03 (2009) 130 [arXiv:0807.3040] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    D. Anninos, G. Compere, S. de Buyl, S. Detournay and M. Guica, The curious case of null warped space, JHEP 11 (2010) 119 [arXiv:1005.4072] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Guica, A Fefferman-Graham-like expansion for null warped AdS 3, arXiv:1111.6978 [INSPIRE].
  55. [55]
    G. Compere and S. Detournay, Boundary conditions for spacelike and timelike warped AdS 3 spaces in topologically massive gravity, JHEP 08 (2009) 092 [arXiv:0906.1243] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime geometry in higher spin gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  58. [58]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].ADSGoogle Scholar
  59. [59]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on massive 3D gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].MathSciNetADSGoogle Scholar
  61. [61]
    E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz black hole in three dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [INSPIRE].MathSciNetADSGoogle Scholar
  62. [62]
    A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    D. Birmingham, I. Sachs and S. Sen, Entropy of three-dimensional black holes in string theory, Phys. Lett. B 424 (1998) 275 [hep-th/9801019] [INSPIRE].MathSciNetADSGoogle Scholar
  64. [64]
    G. Clement, Particle-like solutions to topologically massive gravity, Class. Quant. Grav. 11 (1994) L115 [gr-qc/9404004] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    S. Ertl, D. Grumiller and N. Johansson, All stationary axi-symmetric local solutions of topologically massive gravity, Class. Quant. Grav. 27 (2010) 225021 [arXiv:1006.3309] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    G. Guralnik, A. Iorio, R. Jackiw and S. Pi, Dimensionally reduced gravitational Chern-Simons term and its kink, Annals Phys. 308 (2003) 222 [hep-th/0305117] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  67. [67]
    D. Grumiller and W. Kummer, The classical solutions of the dimensionally reduced gravitational Chern-Simons theory, Annals Phys. 308 (2003) 211 [hep-th/0306036] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  68. [68]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    K. Copsey and R. Mann, Pathologies in asymptotically Lifshitz spacetimes, JHEP 03 (2011) 039 [arXiv:1011.3502] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    G.T. Horowitz and B. Way, Lifshitz singularities, Phys. Rev. D 85 (2012) 046008 [arXiv:1111.1243] [INSPIRE].ADSGoogle Scholar
  71. [71]
    B. Chen, J. Long and J.-B. Wu, Spin-3 topological massive gravity, Phys. Lett. B 705 (2011) 513 [arXiv:1106.5141] [INSPIRE].MathSciNetADSGoogle Scholar
  72. [72]
    A. Bagchi, S. Lal, A. Saha and B. Sahoo, Topologically massive higher spin gravity, JHEP 10 (2011) 150 [arXiv:1107.0915] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    B. Chen and J. Long, High spin topologically massive gravity, JHEP 12 (2011) 114 [arXiv:1110.5113] [INSPIRE].ADSGoogle Scholar
  74. [74]
    H. Tan, Aspects of three-dimensional spin-4 gravity, JHEP 02 (2012) 035 [arXiv:1111.2834] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Michael Gary
    • 1
  • Daniel Grumiller
    • 1
  • Radoslav Rashkov
    • 1
  1. 1.Institute for Theoretical PhysicsVienna University of TechnologyViennaAustria

Personalised recommendations