Advertisement

A dynamical symmetry for supermembranes

  • Jonas de Woul
  • Jens Hoppe
  • Douglas Lundholm
  • Martin Sundin
Article
  • 52 Downloads

Abstract

A dynamical symmetry for supersymmetric extended objects is given.

Keywords

Integrable Equations in Physics M(atrix) Theories Space-Time Symmetries 

References

  1. [1]
    J. Hoppe, Fundamental structures of M(brane) theory, Phys. Lett. B 695 (2011) 384 [arXiv:1003.5189] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    J. Hoppe, Quantum reconstruction Algebras, http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-13591.
  3. [3]
    J. de Woul, J. Hoppe and D. Lundholm, Partial hamiltonian reduction of relativistic extended objects in light-cone gauge, JHEP 01 (2011) 031 [arXiv:1006.4714] [SPIRES].CrossRefGoogle Scholar
  4. [4]
    J. Hoppe, Matrix models and Lorentz invariance, J. Phys. A 44 (2011) 055402 [arXiv:1007.5505] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    J. Hoppe, M-brane dynamical symmetry and quantization, arXiv:1101.4334 [SPIRES].
  6. [6]
    J. Hoppe and M. Trzetrzelewski, Lorentz-invariant membranes and finite matrix approximations, arXiv:1101.4403 [SPIRES].
  7. [7]
    J. Hoppe, Membranes and matrix models, Ph.D. thesis, MIT, U.S.A. (1982).Google Scholar
  8. [8]
    J.Hoppe, Membranes and matrix models, hep-th/0206192 [SPIRES].
  9. [9]
    W. Pauli, Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik, Z. Phys. 36 (1926) 336. ADSCrossRefGoogle Scholar
  10. [10]
    E. Bergshoeff, E. Sezgin and P.K. Townsend, Supermembranes and eleven-dimensional supergravity, Phys. Lett. B 189 (1987) 75 [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    J. Goldstone, unpublished notes (7 pages; passed on to the authors of [12] in 1987/88).Google Scholar
  12. [12]
    B. de Wit, U. Marquard and H. Nicolai, Area preserving diffeomorphisms and supermembrane Lorentz invariance, Commun. Math. Phys. 128 (1990) 39 [SPIRES].ADSMATHCrossRefGoogle Scholar
  13. [13]
    B. de Wit, J. Hoppe and H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys. B 305 (1988) 545. ADSCrossRefGoogle Scholar
  14. [14]
    K. Ezawa, Y. Matsuo and K. Murakami, Lorentz symmetry of supermembrane in light cone gauge formulation, Prog. Theor. Phys. 98 (1997) 485 [hep-th/9705005] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Jonas de Woul
    • 1
  • Jens Hoppe
    • 2
  • Douglas Lundholm
    • 3
  • Martin Sundin
    • 1
  1. 1.Department of Theoretical PhysicsRoyal Institute of Technology (KTH)StockholmSweden
  2. 2.Department of MathematicsRoyal Institute of Technology (KTH)StockholmSweden
  3. 3.Department of Mathematical SciencesUniversity of CopenhagenCopenhagen ØDenmark

Personalised recommendations