Discovery potential for low-scale gauge mediation at early LHC

  • Eita Nakamura
  • Satoshi Shirai


Low-scale gauge-mediated supersymmetry (SUSY)-breaking (GMSB) models with gravitino mass m 3/2 < 16 eV are attractive, since there are no flavor and cosmological problems. In this paper, we thoroughly study the collider signal in the case that the next-to-lightest SUSY particle is the bino or slepton and investigate the discovery potential of the LHC. Our result is applicable to a wider class of GMSB models other than the minimal GMSB models and we pay particular attention to realistic experimental setups. We also apply our analysis to the minimal GMSB models with a metastable SUSY-breaking vacuum and we show, by requiring sufficient stability of the SUSY-breaking vacuum, these models can be tested at an early stage of the LHC.


Supersymmetry Phenomenology 


  1. [1]
    G.F. Giudice and R. Rattazzi, Theories with gauge-mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest, Phys. Rev. D 71 (2005) 063534 [astro-ph/0501562] [SPIRES].ADSGoogle Scholar
  3. [3]
    H. Baer, P.G. Mercadante, F. Paige, X. Tata and Y. Wang, LHC reach for gauge mediated supersymmetry breaking models via prompt photon channels, Phys. Lett. B 435 (1998) 109 [hep-ph/9806290] [SPIRES].ADSGoogle Scholar
  4. [4]
    H. Baer, P.G. Mercadante, X. Tata and Y.-l. Wang, The Reach of the CERN large hadron collider for gauge mediated supersymmetry breaking models, n Phys. Rev. D 62 (2000) 095007 [hep-ph/0004001] [SPIRES].ADSGoogle Scholar
  5. [5]
    The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment-Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES].
  6. [6]
    ATLAS collaboration, D. Harper, Discovery Potential for GMSB Supersymmetry in ATLAS using the Zγ+ /E T Final State at a center of mass energy of \( \sqrt {s} = 10\;{\text{TeV}} \), arXiv:0910.4062 [SPIRES].
  7. [7]
    D. Ludwig and f.t.A. collaboration, Expected Performance of the ATLAS Detector in GMSB Models with Tau Final States, PoS HCP2009 (2009) 073 [arXiv:1002.0944] [SPIRES].Google Scholar
  8. [8]
    J. Hisano, M. Nagai, M. Senami and S. Sugiyama, Stability of Metastable Vacua in Gauge Mediated SUSY Breaking Models with Ultra Light Gravitino, Phys. Lett. B 659 (2008) 361 [arXiv:0708.3340] [SPIRES].ADSGoogle Scholar
  9. [9]
    J. Hisano, M. Nagai, S. Sugiyama and T.T. Yanagida, Upperbound on Squark Masses in Gauge-Mediation Model with Light Gravitino, Phys. Lett. B 665 (2008) 237 [arXiv:0804.2957] [SPIRES].ADSGoogle Scholar
  10. [10]
    C. Cheung, A.L. Fitzpatrick and D. Shih, (Extra)Ordinary Gauge Mediation, JHEP 07 (2008) 054 [arXiv:0710.3585] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    P. Meade, N. Seiberg and D. Shih, General Gauge Mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [SPIRES].ADSMATHCrossRefGoogle Scholar
  12. [12]
    F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: A Monte Carlo event generator for p p, \( \bar{p}p \) and e + e reactions, hep-ph/0312045 [SPIRES].
  13. [13]
    G. Marchesini et al., HERWIG: A Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1-April 1991, Comput. Phys. Commun. 67 (1992) 465 [SPIRES].ADSMATHGoogle Scholar
  14. [14]
    G. Corcella et al., HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [SPIRES].
  16. [16]
    E. Richter-Was, AcerDET: A particle level fast simulation and reconstruction package for phenomenological studies on high p T physics at LHC, hep-ph/0207355 [SPIRES].
  17. [17]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    J.T. Linnemann, Measures of significance in HEP and astrophysics, talk from PhyStat2003, Stanford Ca U.S.A., September 2003, physics/0312059.
  22. [22]
    D0 collaboration, V.M. Abazov et al., Search for associated production of charginos and neutralinos in the trilepton final state using 2.3 fb-1 of data, Phys. Lett. B 680 (2009) 34 [arXiv:0901.0646] [SPIRES].ADSGoogle Scholar
  23. [23]
    J.T. Ruderman and D. Shih, Slepton co-NLSPs at the Tevatron, JHEP 11 (2010) 046 [arXiv:1009.1665] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    D0 collaboration, V.M. Abazov et al., Search for diphoton events with large missing transverse energy in 6.3 fb −1 of \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 105 (2010) 221802 [arXiv:1008.2133] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    DELPHI collaboration, J. Abdallah et al., Searches for supersymmetric particles in e + e collisions up to 208-GeV and interpretation of the results within the MSSM, Eur. Phys. J. C 31 (2003) 421 [hep-ex/0311019] [SPIRES].Google Scholar
  26. [26]
    Z. Komargodski and D. Shih, Notes on SUSY and R-Symmetry Breaking in Wess-Zumino Models, JHEP 04 (2009) 093 [arXiv:0902.0030] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    S. Shirai, M. Yamazaki and K. Yonekura, Aspects of Non-minimal Gauge Mediation, JHEP 06 (2010) 056 [arXiv:1003.3155] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    R. Sato and K. Yonekura, Low Scale Direct Gauge Mediation with Perturbatively Stable Vacuum, JHEP 03 (2010) 017 [arXiv:0912.2802] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    K. Hamaguchi, E. Nakamura, S. Shirai and T.T. Yanagida, Strongly Interacting Gauge Mediation at the LHC, JHEP 07 (2008) 107 [arXiv:0804.3296] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    M. Ibe, Y. Shirman and T.T. Yanagida, Cascade supersymmetry breaking and low-scale gauge mediation, JHEP 12 (2010) 027 [arXiv:1009.2818] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    K.-I. Izawa and T. Yanagida, Dynamical Supersymmetry Breaking in Vector-like Gauge Theories, Prog. Theor. Phys. 95 (1996) 829 [hep-th/9602180] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    K.A. Intriligator and S.D. Thomas, Dynamical Supersymmetry Breaking on Quantum Moduli Spaces, Nucl. Phys. B 473 (1996) 121 [hep-th/9603158] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    J.L. Jones, Gauge Coupling Unification in MSSM + 5 Flavors, Phys. Rev. D 79 (2009) 075009 [arXiv:0812.2106] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TokyoTokyoJapan
  2. 2.IPMUUniversity of TokyoChibaJapan

Personalised recommendations