Advertisement

Nonplanar integrability

  • Warren Carlson
  • Robert de Mello Koch
  • Hai Lin
Article

Abstract

In this article we study operators with a dimension Δ ∼ O(N) and show that simple analytic expressions for the action of the dilatation operator can be found. The operators we consider are restricted Schur polynomials. There are two distinct classes of operators that we consider: operators labeled by Young diagrams with two long columns or two long rows. The main complication in working with restricted Schur polynomials is in building a projector from a given S n+m irreducible representation to an S n × S m irreducible representation (both specified by the labels of the restricted Schur polynomial). We give an explicit construction of these projectors by reducing it to the simple problem of addition of angular momentum in ordinary non-relativistic quantum mechanics. The diagonalization of the dilatation operator reduces to solving three term recursion relations. The fact that the recursion relations have only three terms is a direct consequence of the weak mixing at one loop of the restricted Schur polynomials. The recursion relations can be solved exactly in terms of symmetric Kravchuk polynomials or in terms of Clebsch-Gordan coefficients. This proves that the dilatation operator reduces to a decoupled set of harmonic oscillators and therefore it is integrable.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetMATHGoogle Scholar
  4. [4]
    J.A. Minahan and K. Zarembo, The Bethe-ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [SPIRES].MathSciNetGoogle Scholar
  6. [6]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and Goliath, JHEP 08 (2000) 040 [hep-th/0008015] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018 [hep-th/0403110] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of Babel: On the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [SPIRES].ADSGoogle Scholar
  13. [13]
    V. Balasubramanian, V. Jejjala and J. Simon, The library of Babel, Int. J. Mod. Phys. D 14 (2005) 2181 [hep-th/0505123] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    L. Grant, L. Maoz, J. Marsano, K. Papadodimas and V.S. Rychkov, Minisuperspace quantization of ’bubbling AdS’ and free fermion droplets, JHEP 08 (2005) 025 [hep-th/0505079] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    G. Mandal, Fermions from half-BPS supergravity, JHEP 08 (2005) 052 [hep-th/0502104] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    H.-Y. Chen, D.H. Correa and G.A. Silva, Geometry and topology of bubble solutions from gauge theory, Phys. Rev. D 76 (2007) 026003 [hep-th/0703068] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, Entropy of near-extremal black holes in AdS 5, JHEP 05 (2008) 067 [arXiv:0707.3601] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    R. Fareghbal, C.N. Gowdigere, A.E. Mosaffa and M.M. Sheikh-J abbari, Nearing Extremal Intersecting Giants and New Decoupled Sectors in N = 4 SYM, JHEP 08 (2008) 070 [arXiv:0801.4457] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    R.d.M. Koch, Geometries from Young Diagrams, JHEP 11 (2008) 061 [arXiv:0806.0685] [SPIRES].CrossRefGoogle Scholar
  20. [20]
    R.d.M. Koch, N. Ives and M. Stephanou, Correlators in Nontrivial Backgrounds, Phys. Rev. D 79 (2009) 026004 [arXiv:0810.4041] [SPIRES].ADSGoogle Scholar
  21. [21]
    R. de Mello Koch, T.K. Dey, N. Ives and M. Stephanou, Correlators Of Operators with a Large R-charge, JHEP 08 (2009) 083 [arXiv:0905.2273] [SPIRES].CrossRefGoogle Scholar
  22. [22]
    R. de Mello Koch, T.K. Dey, N. Ives and M. Stephanou, Hints of Integrability Beyond the Planar Limit, JHEP 01 (2010) 014 [arXiv:0911.0967] [SPIRES].CrossRefGoogle Scholar
  23. [23]
    H. Lin, A. Morisse and J.P. Shock, Strings on Bubbling Geometries, JHEP 06 (2010) 055 [arXiv:1003.4190] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    H. Lin, Studies on 1/4 BPS and 1/8 BPS geometries, arXiv:1008.5307 [SPIRES].
  25. [25]
    V. Balasubramanian, D. Berenstein, B. Feng and M.-x. Huang, D-branes in Yang-Mills theory and emergent gauge symmetry, JHEP 03 (2005) 006 [hep-th/0411205] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant Gravitons – with Strings Attached (I), JHEP 06 (2007) 074 [hep-th/0701066] [SPIRES].CrossRefGoogle Scholar
  27. [27]
    R. de Mello Koch, J. Smolic and M. Smolic, Giant Gravitons – with Strings Attached (II), JHEP 09 (2007) 049 [hep-th/0701067] [SPIRES].CrossRefGoogle Scholar
  28. [28]
    Y. Kimura and S. Ramgoolam, Branes, Anti-Branes and Brauer Algebras in Gauge-Gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    D. Bekker, R. de Mello Koch and M. Stephanou, Giant Gravitons – with Strings Attached (III), JHEP 02 (2008) 029 [arXiv:0710.5372] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    R. Bhattacharyya, S. Collins and R.d.M. Koch, Exact Multi-Matrix Correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    S. Corley and S. Ramgoolam, Finite factorization equations and sum rules for BPS correlators in N = 4 SYM theory, Nucl. Phys. B 641 (2002) 131 [hep-th/0205221] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the spectrum of local operators, Phys. Rev. D 78 (2008) 126003 [arXiv:0807.3696] [SPIRES].MathSciNetADSGoogle Scholar
  35. [35]
    Y. Kimura, Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra, JHEP 12 (2009) 044 [arXiv:0910.2170] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    S. Ramgoolam, Schur-Weyl duality as an instrument of Gauge-String duality, AIP Conf. Proc. 1031 (2008) 255 [arXiv:0804.2764] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact Multi-Restricted Schur Polynomial Correlators, JHEP 06 (2008) 101 [arXiv:0805.3025] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    T.W. Brown, Permutations and the Loop, JHEP 06 (2008) 008 [arXiv:0801.2094] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    Y. Kimura, Quarter BPS classified by Brauer algebra, JHEP 05 (2010) 103 [arXiv:1002.2424] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    R.d.M. Koch, G. Mashile and N. Park, Emergent Threebrane Lattices, Phys. Rev. D 81 (2010) 106009 [arXiv:1004.1108] [SPIRES].ADSGoogle Scholar
  41. [41]
    J. Pasukonis and S. Ramgoolam, From counting to construction of BPS states in N = 4 SYM, JHEP 02 (2011) 078 [arXiv:1010.1683] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    V. De Comarmond, R. de Mello Koch and K. Jefferies, Surprisingly Simple Spectra, JHEP 02 (2011) 006 [arXiv:1012.3884] [SPIRES].CrossRefGoogle Scholar
  43. [43]
    C.F. Dunkl, An addition theorem for Hahn polynomials: the spherical functions, SIAM J. Math. Anal. 9 (1978) 627.MathSciNetADSMATHCrossRefGoogle Scholar
  44. [44]
    C.F. Dunkl, Spherical functions on compact groups and applications to special functions, Sym. Math. 22 (1977) 145.MathSciNetGoogle Scholar
  45. [45]
    N.M. Atakishiyev, G.S. Pogosyan and K.B. Wolf, Finite models of the Oscillator, Phys. Part. Nucl. 36 (2005) 521.Google Scholar
  46. [46]
    T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Finite Gelfand pairs and their applications to probability and statistics, J. Math. Sci. 141 (2007) 1182.MathSciNetMATHCrossRefGoogle Scholar
  47. [47]
    T.H. Koornwinder, Clebsch-Gordan coefficients for SU(2) and Hahn polynomials, Nieuw Arch. Wisk. 29 (1981) 140.MathSciNetMATHGoogle Scholar
  48. [48]
    A.F. Nikiforov, S.K. Suslov, Hahn polynomials and their connection with Clebsch-Gordan coefficients of the group SU(2), Akad. Nauk SSSR Inst. Prikl. Mat. 83 (1982) 25.MathSciNetGoogle Scholar
  49. [49]
    A. Donos, A description of 1/4 BPS configurations in minimal type IIB SUGRA, Phys. Rev. D 75 (2007) 025010 [hep-th/0606199] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    B. Chen et al., Bubbling AdS and droplet descriptions of BPS geometries in IIB supergravity, JHEP 10 (2007) 003 [arXiv:0704.2233] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    E. Gava, G. Milanesi, K.S. Narain and M. O’Loughlin, 1/8 BPS states in AdS/CFT, JHEP 05 (2007) 030 [hep-th/0611065] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    N. Kim, AdS 3 solutions of IIB supergravity from D3-branes, JHEP 01 (2006) 094 [hep-th/0511029] [SPIRES].ADSCrossRefGoogle Scholar
  53. [53]
    O. Lunin, Brane webs and 1/4-BPS geometries, JHEP 09 (2008) 028 [arXiv:0802.0735] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    J.P. Gauntlett, N. Kim and D. Waldram, Supersymmetric AdS 3 , AdS 2 and bubble solutions, JHEP 04 (2007) 005 [hep-th/0612253] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    Z.W. Chong, H. Lü and C.N. Pope, BPS geometries and AdS bubbles, Phys. Lett. B 614 (2005) 96 [hep-th/0412221] [SPIRES].ADSGoogle Scholar
  56. [56]
    I. Biswas, D. Gaiotto, S. Lahiri and S. Minwalla, Supersymmetric states of N = 4 Yang-Mills from giant gravitons, JHEP 12 (2007) 006 [hep-th/0606087] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    G. Mandal and N.V. Suryanarayana, Counting 1/8-BPS dual-giants, JHEP 03 (2007) 031 [hep-th/0606088] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    N. Beisert, C. Kristjansen and M. Staudacher, The dilatation operator of N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 [hep-th/9910053] [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    R.d.M. Koch and J. Murugan, Emergent Spacetime, arXiv:0911.4817 [SPIRES].
  61. [61]
    D. Berenstein, Large-N BPS states and emergent quantum gravity, JHEP 01 (2006) 125 [hep-th/0507203] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Warren Carlson
    • 1
  • Robert de Mello Koch
    • 1
    • 2
  • Hai Lin
    • 3
  1. 1.National Institute for Theoretical Physics, Department of Physics and Centre for Theoretical PhysicsUniversity of the WitwatersrandWitsSouth Africa
  2. 2.Stellenbosch Institute for Advanced StudiesStellenboschSouth Africa
  3. 3.Department of Particle Physics, Facultad de FisicaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations