Advertisement

Testing Supersymmetry at the LHC through gluon-fusion production of a slepton pair

  • Francesca Borzumati
  • Kaoru Hagiwara
Article

Abstract

Renormalizable quartic couplings among new particles are typical of supersymmetric models. Their detection could provide a test for Supersymmetry, discriminating it from other extensions of the Standard Model. Quartic couplings among squarks and sleptons, together with the SU(3) gauge couplings for squarks, allow the production of a pair of sleptons through gluon fusion, at the one-loop level. The corresponding cross section, however, is at most of \( \mathcal{O}(1) \) fb for slepton and squark masses of \( \mathcal{O}\left( {100} \right) \) GeV. Our investigation is then extended to the gluon-fusion production of sleptons through the exchange of Higgs bosons. The cross section is even smaller, of \( \mathcal{O}\left( {0.1} \right) \) fb, if the exchanged Higgs boson has mass considerably below the slepton-pair threshold, but it is enhanced when it is resonant. It can reach the \( \mathcal{O}\left( {10} \right) \) fb mark for the production of sleptons of same chirality, and it can exceed it for the production of \( \tilde{\tau } \)’s of opposite chirality, even when the chirality-mixing terms in the squark sector are vanishing. The cross section may be further enhanced if these mixing terms are nonnegligible, providing therefore a potentially interesting probe of the Higgs sector, in particular of μ, tan β, and the trilinear soft Supersymmetry-breaking couplings, also for more realistic sfermion spectra.

Keywords

Higgs Physics Supersymmetric Standard Model Hadronic Colliders 

References

  1. [1]
    H. Murayama, Confusing signals of supersymmetry, talk given at the International Linear Collider Workshop (LCWS2000), Fermilab, Batavia Illinois U.S.A., 24–28 Oct. 2000 [http://conferences.fnal.gov/lcws2000/web/P3_Murayama/index.html].
  2. [2]
    L.-T. Wang and I. Yavin, A review of spin determination at the LHC, Int. J. Mod. Phys. A 23 (2008) 4647 [arXiv:0802.2726] [SPIRES].ADSGoogle Scholar
  3. [3]
    F. Boudjema and R.K. Singh, A model independent spin analysis of fundamental particles using azimuthal asymmetries, JHEP 07 (2009) 028 [arXiv:0903.4705] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    S.Y. Choi, K. Hagiwara, H.U. Martyn, K. Mawatari and P.M. Zerwas, Spin analysis of supersymmetric particles, Eur. Phys. J. C 51 (2007) 753 [hep-ph/0612301] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    F. del Aguila and L. Ametller, On the detectability of sleptons at large hadron colliders, Phys. Lett. B 261 (1991) 326 [SPIRES].ADSGoogle Scholar
  6. [6]
    M. Bisset, S. Raychaudhuri and P. Roy, Higgs-mediated slepton pair-production at the Large Hadron Collider, hep-ph/9602430 [SPIRES].
  7. [7]
    E. Eichten, I. Hinchliffe, K.D. Lane and C. Quigg, Super collider physics, Rev. Mod. Phys. 56 (1984) 579 [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    S. Dawson, E. Eichten and C. Quigg, Search for supersymmetric particles in hadron-hadron collisions, Phys. Rev. D 31 (1985) 1581 [SPIRES].ADSGoogle Scholar
  9. [9]
    P. Chiappetta, J. Soffer and P. Taxil, Spin asymmetries for scalar leptons from W and Z decay in \( p\bar{p} \) collisions, Phys. Lett. B 162 (1985) 192 [SPIRES].ADSGoogle Scholar
  10. [10]
    H. Baer, C.-h. Chen, F. Paige and X. Tata, Detecting sleptons at hadron colliders and supercolliders, Phys. Rev. D 49 (1994) 3283 [hep-ph/9311248] [SPIRES].ADSGoogle Scholar
  11. [11]
    K. Hikasa, Supersymmetric standard model for collider physicists, notes to be requested to the author.Google Scholar
  12. [12]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].
  13. [13]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    S. Kawabata, A new Monte Carlo event generator for high-energy physics, Comput. Phys. Commun. 41 (1986) 127 [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    S. Kawabata, A new version of the multidimensional integration and event generation package BASES/SPRING, Comp. Phys. Commun. 88 (1995) 309 [SPIRES].ADSMATHCrossRefGoogle Scholar
  16. [16]
    M. Claudson, L.J. Hall and I. Hinchliffe, Low-energy supergravity: false vacua and vacuous predictions, Nucl. Phys. B 228 (1983) 501 [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    J.A. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nucl. Phys. B 471 (1996) 3 [hep-ph/9507294] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    A. Kusenko, P. Langacker and G. Segre, Phase transitions and vacuum tunneling into charge and color breaking minima in the MSSM, Phys. Rev. D 54 (1996) 5824 [hep-ph/9602414] [SPIRES].ADSGoogle Scholar
  19. [19]
    U. Sarid, Tools for tunneling, Phys. Rev. D 58 (1998) 085017 [hep-ph/9804308] [SPIRES].ADSGoogle Scholar
  20. [20]
    F. Borzumati, G.R. Farrar, N. Polonsky and S.D. Thomas, Soft Yukawa couplings in supersymmetric theories, Nucl. Phys. B 555 (1999) 53 [hep-ph/9902443] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [SPIRES].ADSMATHCrossRefGoogle Scholar
  22. [22]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    Higgs Working Group collaboration, M.S. Carena et al., Report of the Tevatron Higgs working group, hep-ph/0010338 [SPIRES].
  24. [24]
    J.S. Lee et al., CPsuperH: A computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP-violation, Comput. Phys. Commun. 156 (2004) 283 [hep-ph/0307377] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at next-to-next-to-leading order QCD: virtual corrections, Phys. Lett. B 679 (2009) 467 [arXiv:0907.2997] [SPIRES].ADSGoogle Scholar
  28. [28]
    A. Pak, M. Rogal and M. Steinhauser, Virtual three-loop corrections to Higgs boson production in gluon fusion for finite top quark mass, Phys. Lett. B 679 (2009) 473 [arXiv:0907.2998] [SPIRES].ADSGoogle Scholar
  29. [29]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft-gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    S. Dawson, A. Djouadi and M. Spira, QCD corrections to SUSY Higgs production: The role of squark loops, Phys. Rev. Lett. 77 (1996) 16 [hep-ph/9603423] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    M. Muhlleitner and M. Spira, Higgs boson production via gluon fusion: squark loops at NLO QCD, Nucl. Phys. B 790 (2008) 1 [hep-ph/0612254] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    R. Bonciani, G. Degrassi and A. Vicini, Scalar particle contribution to Higgs production via gluon fusion at NLO, JHEP 11 (2007) 095 [arXiv:0709.4227] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    M. Muhlleitner, H. Rzehak and M. Spira, MSSM Higgs boson production via gluon fusion: the large gluino mass limit, JHEP 04 (2009) 023 [arXiv:0812.3815] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    H. Baer, B.W. Harris and M.H. Reno, Next-to-leading order slepton pair production at hadron colliders, Phys. Rev. D 57 (1998) 5871 [hep-ph/9712315] [SPIRES].ADSGoogle Scholar
  35. [35]
    W. Beenakker et al., The production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum-ibid. 100 (2008) 029901] [hep-ph/9906298] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    M. Grazzini, The Drell-Yan process in NNLO QCD, arXiv:0908.1336 [SPIRES].
  37. [37]
    R.V. Harlander and M. Steinhauser, Supersymmetric Higgs production in gluon fusion at next-to-leading order, JHEP 09 (2004) 066 [hep-ph/0409010] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    R.V. Harlander and F. Hofmann, Pseudo-scalar Higgs production at next-to-leading order SUSY-QCD, JHEP 03 (2006) 050 [hep-ph/0507041] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    G. Degrassi and P. Slavich, On the radiative corrections to the neutral Higgs boson masses in the NMSSM, Nucl. Phys. B 825 (2010) 119 [arXiv:0907.4682] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    C. Anastasiou, S. Beerli and A. Daleo, The two-loop QCD amplitude ggh,H in the minimal supersymmetric standard model, Phys. Rev. Lett. 100 (2008) 241806 [arXiv:0803.3065] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \bar{t}b{H^{+} } \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    J. Guasch, P. Hafliger and M. Spira, MSSM Higgs decays to bottom quark pairs revisited, Phys. Rev. D 68 (2003) 115001 [hep-ph/0305101] [SPIRES].ADSGoogle Scholar
  43. [43]
    F. Borzumati, C. Greub and Y. Yamada, Beyond leading-order corrections to \( \bar{B} \to {X_s}\gamma \) at large tan β: The charged-Higgs contribution, Phys. Rev. D 69 (2004) 055005 [hep-ph/0311151] [SPIRES].ADSGoogle Scholar
  44. [44]
    F. Borzumati, C. Greub and Y. Yamada, Towards an exact evaluation of the supersymmetric O(α s tan β) corrections to \( \bar{B} \to {X_s}\gamma \), hep-ph/0305063 [SPIRES].
  45. [45]
    D. Noth and M. Spira, Higgs boson couplings to bottom quarks: two-loop supersymmetry-QCD corrections, Phys. Rev. Lett. 101 (2008) 181801 [arXiv:0808.0087] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    S.-H. Zhu, Pseudoscalar Higgs boson pair production in photon photon collisions, J. Phys. G 24 (1998) 1703 [SPIRES].ADSGoogle Scholar
  47. [47]
    S.-H. Zhu, C.-S. Li and C.-S. Gao, Lightest neutral Higgs pair production in photon photon collisions in the minimal supersymmetric standard model, Phys. Rev. D 58 (1998) 015006 [hep-ph/9710424] [SPIRES];ADSGoogle Scholar
  48. [48]
    G.J. Gounaris and P.I. Porfyriadis, The gamma gammaA0 A0 process at a gamma gamma collider, Eur. Phys. J. C 18 (2000) 181 [hep-ph/0007110] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    Y.-J. Zhou et al., Neutral Higgs boson pair production via gamma gamma collision in the minimal supersymmetric standard model at linear colliders, Phys. Rev. D 68 (2003) 093004 [hep-ph/0308226] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Physics and IIETohoku UniversitySendaiJapan
  3. 3.KEK Theory Division and SokendaiTsukubaJapan

Personalised recommendations