Advertisement

Brezin-Gross-Witten model as “pure gauge” limit of Selberg integrals

  • A. Mironov
  • A. Morozov
  • Sh. Shakirov
Open Access
Article

Abstract

The AGT relation identifies the Nekrasov functions for various \( \mathcal{N} = 2 \) SUSY gauge theories with the 2d conformal blocks, which possess explicit Dotsenko-Fateev matrix model (β-ensemble) representations the latter being polylinear combinations of Selberg integrals. The “pure gauge” limit of these matrix models is, however, a non-trivial multiscaling large-N limit, which requires a separate investigation. We show that in this pure gauge limit the Selberg integrals turn into averages in a Brezin-Gross-Witten (BGW) model. Thus, the Nekrasov function for pure SU(2) theory acquires a form very much reminiscent of the AMM decomposition formula for some model X into a pair of the BGW models. At the same time, X, which still has to be found, is the pure gauge limit of the elliptic Selberg integral. Presumably, it is again a BGW model, only in the Dijkgraaf-Vafa double cut phase.

Keywords

Matrix Models Supersymmetric gauge theory Conformal and W Symmetry 

References

  1. [1]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    N. Wyllard, A N−1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010) 1 [arXiv:0908.2569] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    N. Drukker, D.R. Morrison and T. Okuda, Loop operators and S-duality from curves on Riemann surfaces, JHEP 09 (2009) 031 [arXiv:0907.2593] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A. Marshakov, A. Mironov and A. Morozov, On combinatorial expansions of conformal blocks, Theor. Math. Phys. 164 (2010) 831 [arXiv:0907.3946] [SPIRES].CrossRefGoogle Scholar
  6. [6]
    A. Marshakov, A. Mironov and A. Morozov, Zamolodchikov asymptotic formula and instanton expansion in N = 2 SUSY N f = 2N c QCD, JHEP 11 (2009) 048 [arXiv:0909.3338] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Mironov, S. Mironov, A. Morozov and A. Morozov, CFT exercises for the needs of AGT, arXiv:0908.2064 [SPIRES].
  8. [8]
    A. Mironov and A. Morozov, The power of Nekrasov functions, Phys. Lett. B 680 (2009) 188 [arXiv:0908.2190] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks, arXiv:0908.0307 [SPIRES].
  10. [10]
    A. Marshakov, A. Mironov and A. Morozov, On non-conformal limit of the AGT relations, Phys. Lett. B 682 (2009) 125 [arXiv:0909.2052] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    S.M. Iguri and C.A. Núñez, Coulomb integrals and conformal blocks in the AdS 3 -WZNW model, JHEP 11 (2009) 090 [arXiv:0908.3460] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    D.V. Nanopoulos and D. Xie, On crossing symmmetry and modular invariance in conformal field theory and S duality in gauge theory, Phys. Rev. D 80 (2009) 105015 [arXiv:0908.4409] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    D. Nanopoulos and D. Xie, Hitchin equation, singularity and N = 2 superconformal field theories, JHEP 03 (2010) 043 [arXiv:0911.1990] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    D. Nanopoulos and D. Xie, Hitchin equation, irregular singularity and N = 2 asymptotical free theories, arXiv:1005.1350 [SPIRES].
  15. [15]
    D. Nanopoulos and D. Xie, N = 2 generalized superconformal quiver gauge theory, arXiv:1006.3486 [SPIRES].
  16. [16]
    L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge theory loop operators and Liouville theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    R. Dijkgraaf and C. Vafa, Toda theories, matrix models, topological strings and N = 2 gauge systems, arXiv:0909.2453 [SPIRES].
  19. [19]
    H. Itoyama, K. Maruyoshi and T. Oota, The quiver matrix model and 2d-4d conformal connection, Prog. Theor. Phys. 123 (2010) 957 [arXiv:0911.4244] [SPIRES].ADSMATHCrossRefGoogle Scholar
  20. [20]
    T. Eguchi and K. Maruyoshi, Penner type matrix model and Seiberg-Witten theory, JHEP 02 (2010) 022 [arXiv:0911.4797] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    T. Eguchi and K. Maruyoshi, Seiberg-Witten theory, matrix model and AGT relation, JHEP 07 (2010) 081 [arXiv:1006.0828] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    R. Schiappa and N. Wyllard, An A r threesome: matrix models, 2d CFT s and 4dN = 2 gauge theories, arXiv:0911.5337 [SPIRES].
  23. [23]
    A. Mironov, A. Morozov and S. Shakirov, Matrix model conjecture for exact BS periods and Nekrasov functions, JHEP 02 (2010) 030 [arXiv:0911.5721] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Mironov, A. Morozov and S. Shakirov, Conformal blocks as Dotsenko-Fateev Integral Discriminants, Int. J. Mod. Phys. A 25 (2010) 3173 [arXiv:1001.0563] [SPIRES];MathSciNetADSGoogle Scholar
  25.  .
    A. Mironov, A. Morozov and A. Morozov, Matrix model version of AGT conjecture and generalized Selberg integrals, Nucl. Phys. B 843 (2011) 534 [arXiv:1003.5752] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [25]
    A. Mironov and A. Morozov, Proving AGT relations in the large-c limit, Phys. Lett. B 682 (2009) 118 [arXiv:0909.3531] [SPIRES].MathSciNetADSGoogle Scholar
  27. [26]
    A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2d topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [27]
    L.F. Alday, F. Benini and Y. Tachikawa, Liouville/ Toda central charges from M5-branes, Phys. Rev. Lett. 105 (2010) 141601 [arXiv:0909.4776] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [28]
    H. Awata and Y. Yamada, Five-dimensional AGT conjecture and the deformed Virasoro algebra, JHEP 01 (2010) 125 [arXiv:0910.4431] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [39]
    H. Awata and Y. Yamada, Five-dimensional AGT relation and the deformed beta-ensemble, Prog. Theor. Phys. 124 (2010) 227 [arXiv:1004.5122] [SPIRES].ADSMATHCrossRefGoogle Scholar
  31. [30]
    S. Kanno, Y. Matsuo, S. Shiba and Y. Tachikawa, N = 2 gauge theories and degenerate fields of Toda theory, Phys. Rev. D 81 (2010) 046004 [arXiv:0911.4787] [SPIRES].MathSciNetADSGoogle Scholar
  32. [31]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [SPIRES].
  33. [32]
    R. Poghossian, Recursion relations in CFT and N = 2 SY M theory, JHEP 12 (2009) 038 [arXiv:0909.3412] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [33]
    G. Bonelli and A. Tanzini, Hitchin systems, N = 2 gauge theories and W-gravity, Phys. Lett. B 691 (2010) 111 [arXiv:0909.4031] [SPIRES].MathSciNetADSGoogle Scholar
  35. [34]
    V. Alba and A. Morozov, Non-conformal limit of AGT relation from the 1-point torus conformal block, arXiv:0911.0363 [SPIRES].
  36. [35]
    A. Mironov and A. Morozov, Nekrasov functions and exact Bohr-Sommerfeld integrals, JHEP 04 (2010) 040 [arXiv:0910.5670] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [36]
    A. Mironov and A. Morozov, Nekrasov functions from exact BS periods: the case of SU(N), J. Phys. A 43 (2010) 195401 [arXiv:0911.2396] [SPIRES].MathSciNetADSGoogle Scholar
  38. [37]
    A. Popolitov, On relation between Nekrasov functions and BS periods in pure SU(N) case, arXiv:1001.1407 [SPIRES].
  39. [38]
    J.-F. Wu and Y. Zhou, From Liouville to Chern-Simons, alternative realization of Wilson loop operators in AGT duality, arXiv:0911.1922 [SPIRES].
  40. [39]
    L. Hadasz, Z. Jaskolski and P. Suchanek, Recursive representation of the torus 1-point conformal block, JHEP 01 (2010) 063 [arXiv:0911.2353] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [40]
    L. Hadasz, Z. Jaskolski and P. Suchanek, Proving the AGT relation for N f = 0, 1, 2 antifundamentals, JHEP 06 (2010) 046 [arXiv:1004.1841] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [41]
    V.A. Fateev and A.V. Litvinov, On AGT conjecture, JHEP 02 (2010) 014 [arXiv:0912.0504] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [42]
    G. Giribet, On triality in N = 2 SCFT with N f = 4, JHEP 01 (2010) 097 [arXiv:0912.1930] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [43]
    V. Alba and A. Morozov, Check of AGT relation for conformal blocks on sphere, Nucl. Phys. B 840 (2010) 441 [arXiv:0912.2535] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [44]
    M. Fujita, Y. Hatsuda and T.-S. Tai, Genus-one correction to asymptotically free Seiberg-Witten prepotential from Dijkgraaf-Vafa matrix model, JHEP 03 (2010) 046 [arXiv:0912.2988] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  46. [45]
    M. Taki, On AGT conjecture for pure super Yang-Mills and W-algebra, arXiv:0912.4789 [SPIRES].
  47. [46]
    M. Taki, Surface operator, bubbling Calabi-Yau and AGT relation, arXiv:1007.2524 [SPIRES].
  48. [47]
    P. Sulkowski, Matrix models for β-ensembles from Nekrasov partition functions, JHEP 04 (2010) 063 [arXiv:0912.5476] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  49. [48]
    N. Nekrasov and E. Witten, The Omega deformation, branes, integrability and Liouville theory, JHEP 09 (2010) 092 [arXiv:1002.0888] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  50. [49]
    R. Santachiara and A. Tanzini, Moore-Read fractional quantum Hall wavefunctions and SU(2) quiver gauge theories, Phys. Rev. D 82 (2010) 126006 [arXiv:1002.5017] [SPIRES].ADSCrossRefGoogle Scholar
  51. [50]
    S. Yanagida, Whittaker vectors of the Virasoro algebra in terms of Jack symmetric polynomial, arXiv:1003.1049 [SPIRES];
  52.  .
    S. Yanagida, Norms of logarithmic primaries of Virasoro algebra, arXiv:1010.0528 [SPIRES].
  53. [51]
    N. Drukker, D. Gaiotto and J. Gomis, The virtue of defects in 4D gauge theories and 2D CFTs, arXiv:1003.1112 [SPIRES].
  54. [52]
    F. Passerini, Gauge theory Wilson loops and conformal Toda field theory, JHEP 03 (2010) 125 [arXiv:1003.1151] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  55. [53]
    H. Itoyama and T. Oota, Method of generating q-expansion coefficients for conformal block and N = 2 Nekrasov function by beta-deformed matrix model, Nucl. Phys. B 838 (2010) 298 [arXiv:1003.2929] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  56. [54]
    C. Kozcaz, S. Pasquetti and N. Wyllard, A & B model approaches to surface operators and Toda theories, JHEP 08 (2010) 042 [arXiv:1004.2025] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  57. [55]
    K. Maruyoshi and M. Taki, Deformed prepotential, quantum integrable system and Liouville field theory, Nucl. Phys. B 841 (2010) 388 [arXiv:1006.4505] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  58. [56]
    W. He and Y.-G. Miao, Magnetic expansion of Nekrasov theory: the SU(2) pure gauge theory, Phys. Rev. D 82 (2010) 025020 [arXiv:1006.1214] [SPIRES].ADSCrossRefGoogle Scholar
  59. [57]
    S. Kanno, Y. Matsuo and S. Shiba, Analysis of correlation functions in Toda theory and AGT-W relation for SU(3) quiver, Phys. Rev. D 82 (2010) 066009 [arXiv:1007.0601] [SPIRES].MathSciNetADSGoogle Scholar
  60. [58]
    H. Awata, H. Fuji, H. Kanno, M. Manabe and Y. Yamada, Localization with a surface operator, irregular conformal blocks and open topological string, arXiv:1008.0574 [SPIRES].
  61. [59]
    C. Kozcaz, S. Pasquetti, F. Passerini and N. Wyllard, Affine (N) conformal blocks from N = 2 SU(N) gauge theories, JHEP 01 (2011) 045 [arXiv:1008.1412] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  62. [60]
    H. Itoyama, T. Oota and N. Yonezawa, Massive scaling limit of beta-deformed matrix model of Selberg type, Phys. Rev. D 82 (2010) 085031 [arXiv:1008.1861] [SPIRES].ADSGoogle Scholar
  63. [61]
    T.-S. Tai, Triality in SU(2) Seiberg-Witten theory and Gauss hypergeometric function, Phys. Rev. D 82 (2010) 105007 [arXiv:1006.0471] [SPIRES].ADSGoogle Scholar
  64. [62]
    T.-S. Tai, Uniformization, Calogero-Moser/ Heun duality and Sutherland/ bubbling pants, JHEP 10 (2010) 107 [arXiv:1008.4332] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  65. [63]
    M. Billó, L. Gallot, A. Lerda and I. Pesando, F-theoretic vs microscopic description of a conformal N = 2 SYM theory, JHEP 11 (2010) 041 [arXiv:1008.5240] [SPIRES].ADSCrossRefGoogle Scholar
  66. [64]
    K. Maruyoshi and F. Yagi, Seiberg-Witten curve via generalized matrix model, JHEP 01 (2011) 042 [arXiv:1009.5553] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  67. [65]
    A. Mironov, A. Morozov and S. Shakirov, On ’Dotsenko-Fateev’ representation of the toric conformal blocks, J. Phys. A 44 (2011) 085401 [arXiv:1010.1734] [SPIRES].MathSciNetADSGoogle Scholar
  68. [66]
    A. Brini, M. Mariño and S. Stevan, The uses of the refined matrix model recursion, arXiv:1010.1210 [SPIRES].
  69. [67]
    M.C.N. Cheng, R. Dijkgraaf and C. Vafa, Non-perturbative topological strings and conformal blocks, arXiv:1010.4573 [SPIRES].
  70. [68]
    N. Wyllard, W-algebras and surface operators in N = 2 gauge theories, arXiv:1011.0289 [SPIRES].
  71. [69]
    Y. Yamada, A quantum isomonodromy equation and its application to N = 2 SU(N) gauge theories, J. Phys. A 44 (2011) 055403 [arXiv:1011.0292] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  72. [70]
    A. Marshakov, A. Mironov and A. Morozov, On AGT relations with surface operator insertion and stationary limit of beta-ensembles, Teor. Mat. Fiz. 164 (2010) 3 [arXiv:1011.4491] [SPIRES].Google Scholar
  73. [71]
    D. Gaiotto, N = 2 dualities, arXiv:0904.2715 [SPIRES].
  74. [72]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  75. [73]
    A. Marshakov, M. Martellini and A. Morozov, Insights and puzzles from branes: 4d SUSY Yang-Mills from 6d models, Phys. Lett. B 418 (1998) 294 [hep-th/9706050] [SPIRES]MathSciNetADSGoogle Scholar
  76. [74]
    A. Gorsky, S. Gukov and A. Mironov, Multiscale N = 2 SUSY field theories, integrable systems and their stringy/ brane origin. I, Nucl. Phys. B 517 (1998) 409 [hep-th/ 9707120] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  77. [75]
    A. Gorsky, S. Gukov and A. Mironov, SUSY field theories, integrable systems and their stringy/ brane origin. II, Nucl. Phys. B 518 (1998) 689 [hep-th/9710239] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  78. [76]
    A. Morozov, Integrability and matrix models, Phys. Usp. 37 (1994) 1 [hep-th/9303139] [SPIRES].ADSMATHCrossRefGoogle Scholar
  79. [77]
    A. Morozov, Matrix models as integrable systems, hep-th/9502091 [SPIRES].
  80. [78]
    A. Mironov, 2 − D gravity and matrix models. 1. 2 − D gravity, Int. J. Mod. Phys. A9 (1994) 4355 [hep-th/9312212] [SPIRES].
  81. [79]
    A. Mironov, Matrix models of two-dimensional gravity, Phys. Part. Nucl. 33 (2002) 537 [SPIRES].Google Scholar
  82. [80]
    N. Seiberg and E. Witten, Monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [hep-th/9407087] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  83. [81]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  84. [82]
    A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [SPIRES].MathSciNetADSGoogle Scholar
  85. [83]
    R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  86. [84]
    A. Morozov, Towards a proof of AGT conjecture by methods of matrix models, talk given at 13 Regional Conference, Turkey, 29 October 2010.Google Scholar
  87. [85]
    A. Mironov, A. Morozov and Sh. Shakirov, Towards a proof of AGT conjecture by methods of matrix models, to appear.Google Scholar
  88. [86]
    A.S. Alexandrov, A. Mironov and A. Morozov, Partition functions of matrix models as the first special functions of string theory. I: Finite size Hermitean 1-matrix model, Int. J. Mod. Phys. A 19 (2004) 4127 [hep-th/0310113] [SPIRES].MathSciNetADSGoogle Scholar
  89. [87]
    A.S. Alexandrov, A. Mironov and A. Morozov, Unified description of correlators in non-Gaussian phases of Hermitean matrix model, Int. J. Mod. Phys. A 21 (2006) 2481 [hep-th/0412099] [SPIRES].MathSciNetADSGoogle Scholar
  90. [88]
    A.S. Alexandrov, A. Mironov and A. Morozov, Solving Virasoro constraints in matrix models, Fortsch. Phys. 53 (2005) 512 [hep-th/0412205] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  91. [89]
    A.S. Alexandrov, A. Mironov, A. Morozov and P. Putrov, Partition functions of matrix models as the first special functions of string theory. II. Kontsevich model, Int. J. Mod. Phys. A 24 (2009) 4939 [arXiv:0811.2825] [SPIRES].MathSciNetADSGoogle Scholar
  92. [90]
    A.S. Alexandrov, A. Mironov and A. Morozov, M-theory of matrix models, Teor. Mat. Fiz. 150 (2007) 179 [hep-th/0605171] [SPIRES].Google Scholar
  93. [91]
    A.S. Alexandrov, A. Mironov and A. Morozov, Instantons and merons in matrix models, Physica D 235 (2007) 126 [hep-th/0608228] [SPIRES].MathSciNetADSGoogle Scholar
  94. [92]
    B. Eynard, Topological expansion for the 1-hermitian matrix model correlation functions, JHEP 11 (2004) 031 [hep-th/0407261] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  95. [93]
    L. Chekhov and B. Eynard, Hermitean matrix model free energy: Feynman graph technique for all genera, JHEP 03 (2006) 014 [hep-th/0504116] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  96. [94]
    L. Chekhov and B. Eynard, Matrix eigenvalue model: Feynman graph technique for all genera, JHEP 12 (2006) 026 [math-ph/0604014] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  97. [95]
    N. Orantin, Symplectic invariants, Virasoro constraints and Givental decomposition, arXiv:0808.0635 [SPIRES].
  98. [96]
    I. Kostov and N. Orantin, CFT and topological recursion, arXiv:1006.2028 [SPIRES].
  99. [97]
    L.O. Chekhov, B. Eynard and O. Marchal, Topological expansion of beta-ensemble model and quantum algebraic geometry in the sectorwise approach, arXiv:1009.6007 [SPIRES].
  100. [98]
    A. Alexandrov, A. Mironov and A. Morozov, BGWM as second constituent of complex matrix model, JHEP 12 (2009) 053 [arXiv:0906.3305] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  101. [99]
    E. Brézin and D.J. Gross, The external field problem in the large-N limit of QCD, Phys. Lett. B 97 (1980) 120 [SPIRES].ADSGoogle Scholar
  102. [100]
    D.J. Gross and E. Witten, Possible third order phase transition in the large-N lattice gauge theory, Phys. Rev. D 21 (1980) 446 [SPIRES].ADSGoogle Scholar
  103. [101]
    A. Mironov, A. Morozov and G.W. Semenoff, Unitary matrix integrals in the framework of generalized Kontsevich model. 1. Brezin-Gross-Witten model, Int. J. Mod. Phys. A 11 (1996) 5031 [hep-th/9404005] [SPIRES].MathSciNetADSGoogle Scholar
  104. [102]
    V. Inozemtsev, The finite Toda lattices Comm. Math. Phys. 121 (1989) 629.MathSciNetADSMATHCrossRefGoogle Scholar
  105. [103]
    H. Itoyama and A. Morozov, Integrability and Seiberg-Witten theory: curves and periods, Nucl. Phys. B 477 (1996) 855 [hep-th/9511126] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  106. [104]
    R. Dijkgraaf and C. Vafa, On geometry and matrix models, Nucl. Phys. B 644 (2002) 21 [hep-th/0207106] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  107. [105]
    A. Morozov and S. Shakirov, Generation of matrix models by W-operators, JHEP 04 (2009) 064 [arXiv:0902.2627] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  108. [106]
    A. Alexandrov, Matrix models for random partitions, arXiv:1005.5715 [SPIRES].
  109. [107]
    A.Y. A. . M. Morozov, ITEP, Unitary integrals and related matrix models, Theor. Math. Phys. 162 (2010) 1 [arXiv:0906.3518] [SPIRES].MATHCrossRefGoogle Scholar
  110. [108]
    A.B. Balantekin, Character expansions in physics, AIP Conf. Proc. 1323 (2010) 1 [arXiv:1011.3859] [SPIRES].ADSCrossRefGoogle Scholar
  111. [109]
    A. Alexandrov, A. Mironov and A. Morozov, Cut-and-join operators, matrix models and characters, to appear.Google Scholar
  112. [110]
    R.P. Stanley, Some combinatorial properties of Jack symmetric functions, Adv. Math. 77 (1989) 76.MathSciNetMATHCrossRefGoogle Scholar
  113. [111]
    I.G. Macdonald, Commuting differential operators and zonal spherical functions, Lect. Notes in Math. 1271 (1987) 189, A.M. Cohen, W.H. Hesselink, W.L.J. van der Kallen and J.R. Strooker eds., Springer, Berlin Germany.Google Scholar
  114. [112]
    S.B. Saïd and B. Ørsted, Analysis on flat symmetric spaces, Journal de Mathe’matiques Pures et Applique’s 84 (2005) 1393.MATHCrossRefGoogle Scholar
  115. [113]
    M. Kontsevich, Intersection theory on the moduli space of curves, Funkts. Anal. Prilozh. 25 (1991) 50.MathSciNetCrossRefGoogle Scholar
  116. [114]
    M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys. 147 (1992) 1 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  117. [115]
    S. Kharchev, A. Marshakov, A. Mironov, A. Morozov and A. Zabrodin, Unification of all string models with C < 1, Phys. Lett. B 275 (1992) 311 [hep-th/9111037] [SPIRES].MathSciNetADSGoogle Scholar
  118. [116]
    S. Kharchev, A. Marshakov, A. Mironov, A. Morozov and A. Zabrodin, Towards unified theory of 2 − D gravity, Nucl. Phys. B 380 (1992) 181 [hep-th/9201013] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  119. [117]
    J. Kaneko, Selberg integrals and hypergeometric functions associated with Jack polynomials, SIAM. J. Math. Anal. 24 (1993) 1086.MathSciNetMATHCrossRefGoogle Scholar
  120. [118]
    K.W.J. Kadell, The Selberg-Jack symmetric functions, Adv. Math. 130 (1997) 33.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Theory DepartmentLebedev Physical InstituteMoscowRussia
  2. 2.ITEPMoscowRussia
  3. 3.Laboratoire de Mathematiques et Physique TheoriqueUniversite Francois Rabelais de Tours, CNRS-UMR 6083ToursFrance
  4. 4.MIPTDolgoprudnyRussia

Personalised recommendations