Search for electromagnetic properties of the neutrinos at the LHC

  • İ. Şahin
  • M. Köksal


Exclusive production of neutrinos via photon-photon fusion provides an excellent opportunity to probe electromagnetic properties of the neutrinos at the LHC. We explore the potential of processes \( pp \to p\gamma \gamma p \to p\nu \bar{\nu }p \) and \( pp \to p\gamma \gamma p \to p\nu \bar{\nu }Zp \) to probe neutrino-photon and neutrino-two photon couplings. We show that these reactions provide more than seven orders of magnitude improvement in neutrino-two photon couplings compared to LEP limits.


Beyond Standard Model Neutrino Physics Electromagnetic Processes and Properties 


  1. [1]
    B.W. Lee and R.E. Shrock, Natural suppression of symmetry violation in gauge theories: muon-lepton and electron lepton number nonconservation, Phys. Rev. D 16 (1977) 1444 [SPIRES].ADSGoogle Scholar
  2. [2]
    W.J. Marciano and A.I. Sanda, Exotic decays of the muon and heavy leptons in gauge theories, Phys. Lett. B 67 (1977) 303 [SPIRES].ADSGoogle Scholar
  3. [3]
    B.W. Lynn, Magnetic moment of massive neutrinos and the cosmic helium abundances, Phys. Rev. D 23 (1981) 2151 [SPIRES].ADSGoogle Scholar
  4. [4]
    R.J. Crewther, J. Finjord and P. Minkowski, The annihilation process \( \nu \bar{\nu } \to \gamma \gamma \) with massive neutrinos in cosmology, Nucl. Phys. B 207 (1982) 269 [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    S. Dodelson and G. Feinberg, Neutrino two photon vertex, Phys. Rev. D 43 (1991) 913 [SPIRES].ADSGoogle Scholar
  6. [6]
    CDF collaboration, A. Abulencia et al., Observation of exclusive electron positron production in hadron hadron collisions, Phys. Rev. Lett. 98 (2007) 112001 [hep-ex/0611040] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    CDF collaboration, T. Aaltonen et al., Search for exclusive γγ production in hadron-hadron collisions, Phys. Rev. Lett. 99 (2007) 242002 [arXiv:0707.2374] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    CDF collaboration, T. Aaltonen et al., Observation of exclusive dijet production at the Fermilab Tevatron \( {p^{-} }\bar{p} \) collider, Phys. Rev. D 77 (2008) 052004 [arXiv:0712.0604] [SPIRES].ADSGoogle Scholar
  9. [9]
    CDF collaboration, T. Aaltonen et al., Observation of exclusive charmonium production and gamma+gamma to μ + μ in \( {p^{-} }\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 102 (2009) 242001 [arXiv:0902.1271] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    CDF collaboration, T. Aaltonen et al., Search for exclusive Z boson production and observation of high mass \( p\bar{p} \to \gamma \gamma \to p \to \ell \ell + \bar{p} \) events in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 102 (2009) 222002 [arXiv:0902.2816] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    O. Kepka and C. Royon, Search for exclusive events using the dijet mass fraction at the Tevatron, Phys. Rev. D 76 (2007) 034012 [arXiv:0704.1956] [SPIRES].ADSGoogle Scholar
  12. [12]
    M. Rangel, C. Royon, G. Alves, J. Barreto and R.B. Peschanski, Diffractive χ production at the Tevatron and the LHC, Nucl. Phys. B 774 (2007) 53 [hep-ph/0612297] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    S.M. Lietti, A.A. Natale, C.G. Roldao and R. Rosenfeld, Searching for anomalous Higgs couplings in peripheral heavy ion collisions at the LHC, Phys. Lett. B 497 (2001) 243 [hep-ph/0009289] [SPIRES].ADSGoogle Scholar
  14. [14]
    K. Piotrzkowski, Tagging two-photon production at the LHC, Phys. Rev. D 63 (2001) 071502 [hep-ex/0009065] [SPIRES].ADSGoogle Scholar
  15. [15]
    V.A. Khoze, A.D. Martin, R. Orava and M.G. Ryskin, Luminosity monitors at the LHC, Eur. Phys. J. C 19 (2001) 313 [hep-ph/0010163] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    V. Avati and K. Osterberg, Acceptance calculations methods for low-beta* optics, CERN-TOTEM-NOTE-2005-002, (2006).
  17. [17]
    V.P. Goncalves and M.V.T. Machado, Diffractive photoproduction of heavy quarks in hadronic collisions, Phys. Rev. D 75 (2007) 031502 [hep-ph/0612265] [SPIRES].ADSGoogle Scholar
  18. [18]
    RP220 collaboration, C. Royon, Project to install roman pot detectors at 220 m in ATLAS, arXiv:0706.1796 [SPIRES].
  19. [19]
    M.V.T. Machado, Investigating the exclusive protoproduction of dileptons at high energies, Phys. Rev. D 78 (2008) 034016 [arXiv:0805.3144] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    O. Kepka and C. Royon, Anomalous WWγ coupling in photon-induced processes using forward detectors at the LHC, Phys. Rev. D 78 (2008) 073005 [arXiv:0808.0322] [SPIRES].ADSGoogle Scholar
  21. [21]
    FP420 R and D collaboration, M.G. Albrow et al., The FP420 R&D Project: Higgs and new physics with forward protons at the LHC, 2009 JINST 4 T10001 [arXiv:0806.0302] [SPIRES].
  22. [22]
    S. Atag, S.C. Inan and I. Sahin, Extra dimensions in photon-induced two lepton final states at the CERN-LHC, Phys.Rev. D 80 (2009) 075009 [arXiv:0904.2687] [SPIRES].ADSGoogle Scholar
  23. [23]
    I. Sahin and S.C. Inan, Probe of unparticles at the LHC in exclusive two lepton and two photon production via photon-photon fusion, JHEP 09 (2009) 069 [arXiv:0907.3290] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    S. Atag, S.C. Inan and I. Sahin, Extra dimensions in γγγγ process at the CERN-LHC, JHEP 09 (2010) 042 [arXiv:1005.4792] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    S.C. Inan, Exclusive excited leptons search in two lepton final states at the CERN-LHC, Phys. Rev. D 81 (2010) 115002 [arXiv:1005.3432] [SPIRES].ADSGoogle Scholar
  26. [26]
    S. Atag and A.A. Billur, Possibility of determining τ lepton electromagnetic moments in γγτ + τ process at the CERN-LHC, JHEP 11 (2010) 060 [arXiv:1005.2841] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    M.G. Albrow, T.D. Coughlin and J.R. Forshaw, Central exclusive particle production at high energy hadron colliders, Prog. Part. Nucl. Phys. 65 (2010) 149 [arXiv:1006.1289] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    V.M. Budnev, I.F. Ginzburg, G.V. Meledin and V.G. Serbo, The two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation, Phys. Rept. 15 (1975) 181 [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    G. Baur, K. Hencken, D. Trautmann, S. Sadovsky and Y. Kharlov, Coherent gamma gamma and gamma A interactions in very peripheral collisions at relativistic ion colliders, Phys. Rept. 364 (2002) 359 [hep-ph/0112211] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    F. Larios, R. Martinez and M.A. Perez, Constraints on i-neutrinoj-neutrino gamma from μeγ, τμγ, eγ, Phys. Lett. B 345 (1995) 259 [SPIRES].ADSGoogle Scholar
  31. [31]
    M. Maya, M.A. Perez, G. Tavares-Velasco and B. Vega, A direct constraint on dimension-eight operators from \( {Z^{-} } \to \nu \bar{\nu }\gamma \), Phys. Lett. B 434 (1998) 354 [hep-ph/9804366] [SPIRES].ADSGoogle Scholar
  32. [32]
    N.F. Bell, V. Cirigliano, M.J. Ramsey-Musolf, P. Vogel and M.B. Wise, How magnetic is the Dirac neutrino?, Phys. Rev. Lett. 95 (2005) 151802 [hep-ph/0504134] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    F. Larios, M.A. Perez and G. Tavares-Velasco, Constraints on neutrino photon interactions from rare Z decays, Phys. Lett. B 531 (2002) 231 [hep-ph/0201024] [SPIRES].ADSGoogle Scholar
  34. [34]
    J.F. Nieves, Two photon decays of heavy neutrinos, Phys. Rev. D 28 (1983) 1664 [SPIRES].ADSGoogle Scholar
  35. [35]
    R.K. Ghosh, Study of the decay neutrino (j)neutrino (i) gamma gamma, Phys. Rev. D 29 (1984) 493 [SPIRES].ADSGoogle Scholar
  36. [36]
    J. Liu, Low-energy neutrino two photon interactions, Phys. Rev. D 44 (1991) 2879 [SPIRES].ADSGoogle Scholar
  37. [37]
    S.N. Gninenko and N.V. Krasnikov, Limits on the magnetic moment of sterile neutrino and two-photon neutrino decay, Phys. Lett. B 450 (1999) 165 [hep-ph/9808370] [SPIRES].ADSGoogle Scholar
  38. [38]
    TEXONO collaboration, H.B. Li et al., New limits on neutrino magnetic moments from the Kuo-Sheng reactor neutrino experiment, Phys. Rev. Lett. 90 (2003) 131802 [hep-ex/0212003] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    MUNU collaboration, Z. Daraktchieva et al., Final results on the neutrino magnetic moment from the MUNU experiment, Phys. Lett. B 615 (2005) 153 [hep-ex/0502037] [SPIRES].ADSGoogle Scholar
  40. [40]
    TEXONO collaboration, H.T. Wong et al., Search of neutrino magnetic moments with a high-purity germanium detector at the Kuo-Sheng nuclear power station, Phys. Rev. D 75 (2007) 012001 [hep-ex/0605006] [SPIRES].ADSGoogle Scholar
  41. [41]
    H.T. Wong, H.-B. Li and S.-T. Lin, Derivations of atomic ionization effects induced by neutrino magnetic moments, Phys. Rev. Lett. 105 (2010) 061801 [arXiv:1001.2074] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    The Borexino collaboration, C. Arpesella et al., Direct measurement of the Be-7 solar neutrino flux with 192 days of borexino data, Phys. Rev. Lett. 101 (2008) 091302 [arXiv:0805.3843] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    G.G. Raffelt, Limits on neutrino electromagnetic properties: An update, Phys. Rept. 320 (1999) 319 [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    V. Castellani and S. Degl’Innocenti, Stellar evolution as a probe of neutrino properties, Astrophys. J. 402 (1993) 574 [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    M. Catelan, J.A. d.F. Pacheco and J.E. Horvath, The helium-core mass at the helium flash in low-mass red giant stars: observations and theory, Astrophys. J. 461 (1996) 231 [astro-ph/9509062] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    A. Ayala, J.C. D’Olivo and M. Torres, Bound on the neutrino magnetic moment from chirality flip in supernovae, Phys. Rev. D 59 (1999) 111901 [hep-ph/9804230] [SPIRES].ADSGoogle Scholar
  47. [47]
    R. Barbieri and R.N. Mohapatra, Limit on the magnetic moment of the neutrino from supernova SN 1987a observations, Phys. Rev. Lett. 61 (1988) 27 [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    J.M. Lattimer and J. Cooperstein, Limits on the neutrino magnetic moment from SN 1987a, Phys. Rev. Lett. 61 (1988) 23 [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    A. Heger, A. Friedland, M. Giannotti and V. Cirigliano, The impact of neutrino magnetic moments on the evolution of massive stars, Astrophys. J. 696 (2009) 608 [arXiv:0809.4703] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    CMS collaboration, CMS physics technical design report volume I, D. Acosta ed., CERN/LHCC 2006-001.

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsZonguldak Karaelmas UniversityZonguldakTurkey
  2. 2.Department of PhysicsCumhuriyet UniversitySivasTurkey

Personalised recommendations