Advertisement

Dimensional reduction of the ABJM model

  • Horatiu Nastase
  • Constantinos Papageorgakis
Article

Abstract

We dimensionally reduce the ABJM model, obtaining a two-dimensional theory that can be thought of as a ‘master action’. This encodes information about both T- and S-duality, i.e. describes fundamental (F1) and D-strings (D1) in 9 and 10 dimensions. The Higgsed theory at large VEV, \( \tilde{v} \), and large k yields D1-brane actions in 9d and 10d, depending on which auxiliary fields are integrated out. For N = 1thereisamaptoa Green-Schwarz string wrapping a nontrivial circle in \( {{{{\mathbb{C}^4}}} \left/ {{{\mathbb{Z}_k}}} \right.} \).

Keywords

Brane Dynamics in Gauge Theories D-branes M-Theory String Duality 

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    E. Bergshoeff, E. Sezgin and P.K. Townsend, Supermembranes and eleven-dimensional supergravity, Phys. Lett. B 189 (1987) 75 [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    M.J. Duff, P.S. Howe, T. Inami and K.S. Stelle, Superstrings in D = 10 from supermembranes in D = 11, Phys. Lett. B 191 (1987) 70 [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    S. Mukhi and C. Papageorgakis, M2 to D2, JHEP 05 (2008) 085 [arXiv:0803.3218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J. Distler, S. Mukhi, C. Papageorgakis and M. Van Raamsdonk, M2-branes on M-folds, JHEP 05 (2008) 038 [arXiv:0804.1256] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    M.A. Santos and I.V. Vancea, Two Dimensional Effective Field Theory from Bagger-Lambert-Gustavsson Model, Mod. Phys. Lett. A 24 (2009) 2275 [arXiv:0809.0256] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    P. Franche, Reduction of the N = 8 BLG and N = 6 BL Theories to 2D Effective Field Theories, arXiv:0811.1443 [SPIRES].
  8. [8]
    J. Bagger and N. Lambert, Gauge Symmetry and Supersymmetry of Multiple M2-Branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A Massive Study of M2-brane Proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    H. Nastase, C. Papageorgakis and S. Ramgoolam, The fuzzy S 2 structure of M2 − M5 systems in ABJM membrane theories, JHEP 05 (2009) 123 [arXiv:0903.3966] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    H. Nastase and C. Papageorgakis, Fuzzy Killing Spinors and Supersymmetric D4 action on the Fuzzy 2-sphere from the ABJM Model, JHEP 12 (2009) 049 [arXiv:0908.3263] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    H. Nastase and C. Papageorgakis, Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors, SIGMA 6 (2010) 058 [arXiv:1003.5590] [SPIRES].MathSciNetGoogle Scholar
  15. [15]
    Y. Pang and T. Wang, From N M2’sto N D2’s, Phys. Rev. D 78 (2008) 125007 [arXiv:0807.1444] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    X. Chu, H. Nastase, B.E.W. Nilsson and C. Papageorgakis, Higgsing M2 to D2 with gravity: N = 6 chiral supergravity from topologically gauged ABJM theory, arXiv:1012.5969 [SPIRES].
  17. [17]
    T.H. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B 194 (1987) 59 [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    S. Sasaki, On Non-linear Action for Gauged M2-brane, JHEP 02 (2010) 039 [arXiv:0912.0903] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    N. Lambert and C. Papageorgakis, Relating U(N) × U(N) to SU(N) × SU(N) Chern-Simons Membrane theories, JHEP 04 (2010) 104 [arXiv:1001.4779] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    N. Arkani-Hamed, A.G. Cohen, D.B. Kaplan, A. Karch and L. Motl, Deconstructing (2, 0) and little string theories, JHEP 01 (2003) 083 [hep-th/0110146] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Instituto de Física TeóricaUNESP-Universidade Estadual PaulistaSao PauloBrazil
  2. 2.Department of MathematicsKing’s College LondonLondonU.K.

Personalised recommendations