Comments on k-strings at large N

  • Joanna L. Karczmarek
  • Gordon W. Semenoff
  • Shuhang Yang


We present a computation of the k-string tension in the large N limit of the two-dimensional lattice Yang-Mills theory. It is well known that the problems of computing the partition function and the Wilson loop can be both reduced to a unitary matrix integral which has a third order phase transition separating weak and strong coupling. We give an explicit computation of the interaction energy for k-strings in the large N limit when \( \frac{k}{N} \) is held constant and non-zero. In this limit, the interaction energy is finite and attractive. We show that, in the strong coupling phase, the kNk duality is realized as a first order phase transition. We also show that the lattice k-string tension reduces to the expected Casimir scaling in the continuum limit.


Matrix Models Lattice Gauge Field Theories 


  1. [1]
    M.J. Strassler, Messages for QCD from the superworld, Prog. Theor. Phys. Suppl. 131 (1998) 439 [hep-lat/9803009] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    M.J. Strassler, QCD, supersymmetric QCD, lattice QCD and string theory: synthesis on the horizon?, Nucl. Phys. Proc. Suppl. 73 (1999) 120 [hep-lat/9810059] [SPIRES].ADSMATHCrossRefGoogle Scholar
  3. [3]
    L. Del Debbio, H. Panagopoulos and E. Vicari, Confining strings in representations with common n-ality, JHEP 09 (2003) 034 [hep-lat/0308012] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    L. Del Debbio, H. Panagopoulos, P. Rossi and E. Vicari, Spectrum of confining strings in SU(N) gauge theories, JHEP 01 (2002) 009 [hep-th/0111090] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    J. Greensite and Š. Olejník, K-string tensions and center vortices at large-N, JHEP 09 (2002) 039 [hep-lat/0209088] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    A. Armoni and M. Shifman, On k-string tensions and domain walls in N = 1 gluodynamics, Nucl. Phys. B 664 (2003) 233 [hep-th/0304127] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Armoni and M. Shifman, Remarks on stable and quasi-stable k-strings at large-N, Nucl. Phys. B 671 (2003) 67 [hep-th/0307020] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    C.P. Korthals Altes and H.B. Meyer, Hot QCD, k-strings and the adjoint monopole gas model, hep-ph/0509018 [SPIRES].
  9. [9]
    P. Orland, String tensions and representations in anisotropic (2+1)-dimensional weakly-coupled Yang-Mills theory, Phys. Rev. D 75 (2007) 025001 [hep-th/0608067] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    B. Bringoltz and M. Teper, Closed k-strings in SU(N) gauge theories: 2+1 dimensions, Phys. Lett. B 663 (2008) 429 [arXiv:0802.1490] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    M.R. Douglas and S.H. Shenker, Dynamics of SU(N) supersymmetric gauge theory, Nucl. Phys. B 447 (1995) 271 [hep-th/9503163] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    D.J. Gross and E. Witten, Possible third order phase transition in the large-N lattice gauge theory, Phys. Rev. D 21 (1980) 446 [SPIRES].ADSGoogle Scholar
  13. [13]
    S.B. Khokhlachev and Y.M. Makeenko, Phase transition over gauge group center and quark confinement in QCD, Phys. Lett. B 101 (1981) 403 [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    A. Dumitru, Y. Hatta, J. Lenaghan, K. Orginos and R.D. Pisarski, Deconfining phase transition as a matrix model of renormalized Polyakov loops, Phys. Rev. D 70 (2004) 034511 [hep-th/0311223] [SPIRES].ADSGoogle Scholar
  15. [15]
    R.D. Pisarski, Gross-Witten point and deconfinement, Int. J. Mod. Phys. A 20 (2005) 4469 [SPIRES].ADSGoogle Scholar
  16. [16]
    A. Hanany, M.J. Strassler and A. Zaffaroni, Confinement and strings in MQCD, Nucl. Phys. B 513 (1998) 87 [hep-th/9707244] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    C.P. Herzog and I.R. Klebanov, On string tensions in supersymmetric SU(M) gauge theory, Phys. Lett. B 526 (2002) 388 [hep-th/0111078] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    S. Yang, Large N gauge theory and k-strings, UBC MSc Thesis (2010).Google Scholar
  19. [19]
    G. Grignani, J.L. Karczmarek and G.W. Semenoff, Hot giant loop holography, Phys. Rev. D 82 (2010) 027901 [arXiv:0904.3750] [SPIRES].ADSGoogle Scholar
  20. [20]
    S.A. Hartnoll and S.P. Kumar, Higher rank Wilson loops from a matrix model, JHEP 08 (2006) 026 [hep-th/0605027] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Joanna L. Karczmarek
    • 1
  • Gordon W. Semenoff
    • 1
  • Shuhang Yang
    • 1
  1. 1.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada

Personalised recommendations