Advertisement

On the factorization of overlapping singularities at NNLO

  • Charalampos Anastasiou
  • Franz Herzog
  • Achilleas Lazopoulos
Article

Abstract

Real and virtual corrections in NNLO QCD require multi-dimensional integrals with overlapping singularities. We first review ideas and methods which have been proposed for performing such computations. We then present a new method for the factorization of overlapping singularities based on non-linear integral transformations. We apply this method for the evaluation of all integral topologies which appear in double real radiation corrections in cross-section calculations for the production of a heavy system at hadron colliders. Finally, we demonstrate with typical examples that two-loop virtual corrections are amenable to the same method.

Keywords

NLO Computations QCD 

References

  1. [1]
    C.F. Berger et al., Precise Predictions for W + 4 Jet Production at the Large Hadron Collider, arXiv:1009.2338 [SPIRES].
  2. [2]
    R. Hamberg, W.L. van Neerven and T. Matsuura, A Complete calculation of the order α s 2 correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [SPIRES].ADSGoogle Scholar
  7. [7]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    K. Melnikov and F. Petriello, The W boson production cross section at the LHC through O(α s 2), Phys. Rev. Lett. 96 (2006) 231803 [hep-ph/0603182] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Jet rates in electron-positron annihilation at O(α s 3) in QCD, Phys. Rev. Lett. 100 (2008) 172001 [arXiv:0802.0813] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett. 101 (2008) 162001 [arXiv:0807.3241] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    T. Gehrmann and E. Remiddi, Differential equations for two-loop four-point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    V.A. Smirnov, Analytical result for dimensionally regularized massless on-shell double box, Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [SPIRES].ADSGoogle Scholar
  18. [18]
    J.B. Tausk, Non-planar massless two-loop Feynman diagrams with four on-shell legs, Phys. Lett. B 469 (1999) 225 [hep-ph/9909506] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    C. Anastasiou and A. Daleo, Numerical evaluation of loop integrals, JHEP 10 (2006) 031 [hep-ph/0511176] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [SPIRES].ADSMATHCrossRefGoogle Scholar
  21. [21]
    T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multi-loop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    K. Hepp, Proof of the Bogolyubov-Parasiuk theorem on renormalization, Commun. Math. Phys. 2 (1966) 301 [SPIRES].ADSMATHCrossRefGoogle Scholar
  23. [23]
    M. Roth and A. Denner, High-energy approximation of one-loop Feynman integrals, Nucl. Phys. B 479 (1996) 495 [hep-ph/9605420] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    K. Melnikov, O(α s 2) corrections to semileptonic decay \( b \to cl{\bar{\nu }_l} \), Phys. Lett. B 666 (2008) 336 [arXiv:0803.0951] [SPIRES].ADSGoogle Scholar
  25. [25]
    H.M. Asatrian et al., NNLL QCD contribution of the electromagnetic dipole operator to \( \Gamma \left( {\bar{B} \to {X_s}\gamma } \right) \), Nucl. Phys. B 749 (2006) 325 [hep-ph/0605009] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    C. Anastasiou, K. Melnikov and F. Petriello, The electron energy spectrum in muon decay through O(α 2), JHEP 09 (2007) 014 [hep-ph/0505069] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [SPIRES].ADSGoogle Scholar
  28. [28]
    M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [SPIRES].ADSGoogle Scholar
  29. [29]
    F. Petriello, private communication.Google Scholar
  30. [30]
    P. Bolzoni, G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms, JHEP 01 (2011) 059 [arXiv:1011.1909] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    C. Anastasiou, A. Banfi, Loop lessons from Wilson loops in N = 4 supersymmetric Yang-Mills theory, JHEP 02 (2011) 064 [arXiv:1101.4118] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Charalampos Anastasiou
    • 1
  • Franz Herzog
    • 1
  • Achilleas Lazopoulos
    • 1
  1. 1.Institute for Theoretical PhysicsETH ZurichZurichSwitzerland

Personalised recommendations