Advertisement

Meson-meson scattering in QCD-like theories

  • Johan Bijnens
  • Jie Lu
Article

Abstract

We discuss meson-meson scattering at next-to-next-to-leading order in the chiral expansion for QCD-like theories with general n degenerate flavours for the cases with a complex, real and pseudo-real representation. i.e. with global symmetry and breaking pattern SU(n) L × SU(n) R → SU(n) V , SU(2n) → SO(2n) and SU(2n) → Sp(2n). We obtain fully analytical expressions for all these cases. We discuss the general structure of the amplitude and the structure of the possible intermediate channels for all three cases. We derive the expressions for the lowest partial wave scattering length in each channel and present some representative numerical results. We also show various relations between the different cases in the limit of large n.

Keywords

Spontaneous Symmetry Breaking Lattice Gauge Field Theories Chiral Lagrangians Technicolor and Composite Models 

References

  1. [1]
    J. Bijnens and J. Lu, Technicolor and other QCD-like theories at next-to-next-to-leading order, JHEP 11 (2009) 116 [arXiv:0910.5424] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    M.E. Peskin, The Alignment of the Vacuum in Theories of Technicolor, Nucl. Phys. B 175 (1980) 197 [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    J. Preskill, Subgroup Alignment in Hypercolor Theories, Nucl. Phys. B 177 (1981) 21 [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    S. Dimopoulos, Technicolored Signatures, Nucl. Phys. B 168 (1980) 69 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    F. Sannino, Conformal Dynamics for TeV Physics and Cosmology, Acta Phys. Polon. B 40 (2009) 3533 [arXiv:0911.0931] [SPIRES].Google Scholar
  6. [6]
    C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    S. Catterall and F. Sannino, Minimal walking on the lattice, Phys. Rev. D 76 (2007) 034504 [arXiv:0705.1664] [SPIRES].ADSGoogle Scholar
  8. [8]
    T. Appelquist et al., Toward TeV Conformality, Phys. Rev. Lett. 104 (2010) 071601 [arXiv:0910.2224] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    A. Deuzeman, M.P. Lombardo and E. Pallante, The physics of eight flavours, Phys. Lett. B 670 (2008) 41 [arXiv:0804.2905] [SPIRES].ADSGoogle Scholar
  10. [10]
    L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, The infrared dynamics of Minimal Walking Technicolor, Phys. Rev. D 82 (2010) 014510 [arXiv:1004.3206] [SPIRES].ADSGoogle Scholar
  11. [11]
    T. DeGrand, Y. Shamir and B. Svetitsky, Phase structure of SU(3) gauge theory with two flavors of symmetric-representation fermions, Phys. Rev. D 79 (2009) 034501 [arXiv:0812.1427] [SPIRES].ADSGoogle Scholar
  12. [12]
    S. Catterall, J. Giedt, F. Sannino and J. Schneible, Phase diagram of SU(2) with 2 flavors of dynamical adjoint quarks, JHEP 11 (2008) 009 [arXiv:0807.0792] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    M. Lüscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 2. Scattering States, Commun. Math. Phys. 105 (1986) 153 [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot and A. Zhitnitsky, QCD-like theories at finite baryon density, Nucl. Phys. B 582 (2000) 477 [hep-ph/0001171] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    Y.I. Kogan, M.A. Shifman and M.I. Vysotsky, Spontaneous Breaking Of Chiral Symmetry For Real Fermions And N = 2 Susy Yang-Mills Theory, Sov. J. Nucl. Phys. 42 (1985) 318 [Yad. Fiz. 42 (1985) 504] [SPIRES].Google Scholar
  16. [16]
    H. Leutwyler and A.V. Smilga, Spectrum of Dirac operator and role of winding number in QCD, Phys. Rev. D 46 (1992) 5607 [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    A.V. Smilga and J.J.M. Verbaarschot, Spectral sum rules and finite volume partition function in gauge theories with real and pseudoreal fermions, Phys. Rev. D 51 (1995) 829 [hep-th/9404031] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    J. Gasser and H. Leutwyler, Light Quarks at Low Temperatures, Phys. Lett. B 184 (1987) 83 [SPIRES].ADSGoogle Scholar
  20. [20]
    K. Splittorff, D. Toublan and J.J.M. Verbaarschot, Diquark condensate in QCD with two colors at next-to-leading order, Nucl. Phys. B 620 (2002) 290 [hep-ph/0108040] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    J. Bijnens, G. Colangelo and G. Ecker, The mesonic chiral Lagrangian of order p 6, JHEP 02 (1999) 020 [hep-ph/9902437] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    J. Bijnens, G. Colangelo and G. Ecker, Renormalization of chiral perturbation theory to order p 6, Annals Phys. 280 (2000) 100 [hep-ph/9907333] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    S. Weinberg, Pion scattering lengths, Phys. Rev. Lett. 17 (1966) 616 [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    J. Bijnens, G. Colangelo, G. Ecker, J. Gasser and M.E. Sainio, Elastic ππscattering to two loops, Phys. Lett. B 374 (1996) 210 [hep-ph/9511397] [SPIRES].ADSGoogle Scholar
  25. [25]
    J. Bijnens, G. Colangelo, G. Ecker, J. Gasser and M.E. Sainio, Pion pion scattering at low energy, Nucl. Phys. B 508 (1997) 263 [Erratum ibid. B 517 (1998) 639] [hep-ph/9707291] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Ann. Phys. 158 (1984) 142 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    G.F. Chew and S. Mandelstam, Theory of low-energy pion pion interactions, Phys. Rev. 119 (1960) 467 [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  30. [30]
    D.E. Neville, Elastic Scattering of Pseudosscalar Mesons and SU n Symmetry, Phys. Rev. 132 (1963) 844 [SPIRES].ADSMATHCrossRefGoogle Scholar
  31. [31]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  32. [32]
    G. Girardi, A. Sciarrino and P. Sorba, Kronecker Products For SO(2p) Representations, J. Phys. A 15 (1982) 1119 [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    G. Girardi, A. Sciarrino and P. Sorba, Kronecker Product Of Sp(2n) Representations Using Generalized Young Tableaux, J. Phys. A 16 (1983) 2609 [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    J. Stern, H. Sazdjian and N.H. Fuchs, What π − π scattering tells us about chiral perturbation theory, Phys. Rev. D 47 (1993) 3814 [hep-ph/9301244] [SPIRES].ADSGoogle Scholar
  35. [35]
    J. Gasser and M.E. Sainio, Two-loop integrals in chiral perturbation theory, Eur. Phys. J. C 6 (1999) 297 [hep-ph/9803251] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
  37. [37]
    G. Amoros, J. Bijnens and P. Talavera, QCD isospin breaking in meson masses, decay constants and quark mass ratios, Nucl. Phys. B 602 (2001) 87 [hep-ph/0101127] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].
  39. [39]
    G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    J. Bijnens and P. Talavera, Pion and kaon electromagnetic form factors, JHEP 03 (2002) 046 [hep-ph/0203049] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    M. Knecht, B. Moussallam, J. Stern and N.H. Fuchs, The Low-energy pi pi amplitude to one and two loops, Nucl. Phys. B 457 (1995) 513 [hep-ph/9507319] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations