Shocks and universal statistics in (1+1)-dimensional relativistic turbulence



We propose that statistical averages in relativistic turbulence exhibit universal properties. We consider analytically the velocity and temperature differences structure functions in the (1+1)-dimensional relativistic turbulence in which shock waves provide the main contribution to the structure functions in the inertial range. We study shock scattering, demonstrate the stability of the shock waves, and calculate the anomalous exponents. We comment on the possibility of finite time blowup singularities.


Field Theories in Lower Dimensions Random Systems 


  1. [1]
    U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge U.K. (1995).MATHGoogle Scholar
  2. [2]
    G. Falkovich, I. Fouxon and Y. Oz, New relations for correlation functions in Navier-Stokes turbulence, J. Fluid Mech. 644 (2010) 465 [arXiv:0909.3404] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    I. Fouxon and Y. Oz, Exact Scaling Relations In Relativistic Hydrodynamic Turbulence, Phys. Lett. B 694 (2010) 261 [arXiv:0909.3574] [SPIRES].ADSGoogle Scholar
  4. [4]
    I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A.M. Polyakov, Turbulence without pressure, hep-th/9506189 [SPIRES].
  6. [6]
    W.E and E. Eijnden, Statistical Theory for the Stochastic Burgers Equation in the Inviscid Limit, Commun. Pure Appl. Math. 53 (2000) 852 [chao-dyn/9904028].
  7. [7]
    U. Frisch and J. Bec, Burgulence, in New Trends in Turbulence, Les Houches, 2001 74 (2001) 341.Google Scholar
  8. [8]
    Ya.G. Sinai, Statistics of Shocks in Solutions of Inviscid Burgers Equation, Commun. Math. Phys. 148 (1992) 601. MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    Z.S. She, E. Aurell and U. Frisch, The Inviscid Burgers Equation with Initial Data of Brownian Type, Commun. Math. Phys. 148 (1992) 623. MathSciNetADSMATHCrossRefGoogle Scholar
  10. [10]
    L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergamon, Oxford U.K. (1987).MATHGoogle Scholar
  11. [11]
    L.C. Evans, Graduate Studies in Mathematics. Vol. 19: Partial Differential Equations, Am. Math. Society, Providence U.S.A. (1998).Google Scholar
  12. [12]
    J. Glimm and P. Lax, Memoirs of the American Mathematical Society. Vol. 101: Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws, Am. Math. Society, Providence U.S.A. (1970).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Raymond and Beverly Sackler School of Physics and AstronomyTel-Aviv UniversityRamat-AvivIsrael

Personalised recommendations