Leptogenesis as a common origin for matter and dark matter

  • Haipeng An
  • Shao-Long Chen
  • Rabindra N. Mohapatra
  • Yue Zhang


We propose a model of asymmetric dark matter (DM) where the dark sector is an identical copy of both forces and matter of the standard model (SM) as in the mirror universe models discussed in literature. In addition to being connected by gravity, the SM and DM sectors are also connected at high temperature by a common set of heavy right-handed Majorana neutrinos via their Yukawa couplings to leptons and Higgs bosons. The lightest nucleon in the dark (mirror) sector is a candidate for dark matter. The out of equilibrium decay of right-handed neutrino produces equal lepton asymmetry in both sectors via resonant leptogenesis which then get converted to baryonic and dark baryonic matter. The dark baryon asymmetry due to higher dark nucleon masses leads to higher dark matter density compared to the familiar baryon density that is observed. The standard model neutrinos in this case acquire masses from the inverse seesaw mechanism. A kinetic mixing between the U(1) gauge fields of the two sectors is introduced to guarantee the success of Big-Bang Nucleosynthesis.


Cosmology of Theories beyond the SM Beyond Standard Model 


  1. [1]
    A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991) 392] [SPIRES].Google Scholar
  2. [2]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [SPIRES].ADSGoogle Scholar
  3. [3]
    P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  4. [4]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, D.Z. Freedman and P. van Nieuwenhuizen eds., North-Holland, Amsterdam The Netherlands (1979) [SPIRES].Google Scholar
  5. [5]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, Tsukuba Japan February 13–14 1979, O. Sawada and A. Sugamoto eds. (1979) [SPIRES].
  6. [6]
    S.L. Glashow, The future of elementary particle physics, in Proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons, Plenum Press, New York U.S.A. (1980).Google Scholar
  7. [7]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [SPIRES].ADSGoogle Scholar
  9. [9]
    T.D. Lee and C.-N. Yang, Question of parity conservation in weak interactions, Phys. Rev. 104 (1956) 254 [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    K. Nishijima, private communication.Google Scholar
  11. [11]
    Y. Kobzarev, L. Okun and I.Y. Pomeranchuk, On the possibility of observing mirror particles (in Russian), Yad. Fiz. 3 (1966) 1154 [Sov. J. Nucl. Phys. 3 (1966) 837].Google Scholar
  12. [12]
    M. Pavsic, External inversion, internal inversion and reflection invariance, Int. J. Theor. Phys. 9 (1974) 229 [hep-ph/0105344] [SPIRES].CrossRefGoogle Scholar
  13. [13]
    S.I. Blinnikov and M.Y. Khlopov, Possible astronomical effects of mirror particles, Sov. Astron. 27 (1983) 371 [Astron. Zh. 60 (1983) 632] [SPIRES].ADSGoogle Scholar
  14. [14]
    R. Foot, H. Lew and R.R. Volkas, A model with fundamental improper space-time symmetries, Phys. Lett. B 272 (1991) 67 [SPIRES].ADSGoogle Scholar
  15. [15]
    R. Foot, H. Lew and R.R. Volkas, Possible consequences of parity conservation, Mod. Phys. Lett. A 7 (1992) 2567 [SPIRES].ADSGoogle Scholar
  16. [16]
    R. Foot and R.R. Volkas, Neutrino physics and the mirror world: how exact parity symmetry explains the solar neutrino deficit, the atmospheric neutrino anomaly and the LSND experiment, Phys. Rev. D 52 (1995) 6595 [hep-ph/9505359] [SPIRES].ADSGoogle Scholar
  17. [17]
    Z.G. Berezhiani and R.N. Mohapatra, Reconciling present neutrino puzzles: sterile neutrinos as mirror neutrinos, Phys. Rev. D 52 (1995) 6607 [hep-ph/9505385] [SPIRES].ADSGoogle Scholar
  18. [18]
    Z.G. Berezhiani, A.D. Dolgov and R.N. Mohapatra, Asymmetric inflationary reheating and the nature of mirror universe, Phys. Lett. B 375 (1996) 26 [hep-ph/9511221] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    Z. Silagadze, Neutrino mass and mirror universe, Phys. Atom. Nucl. 60 (1997) 272 [Yad. Fiz. 60N2 (1997) 336] [hep-ph/9503481] [SPIRES].ADSGoogle Scholar
  20. [20]
    L.B. Okun, Mirror particles and mirror matter: 50 years of speculations and search, Phys. Usp. 50 (2007) 380 [hep-ph/0606202] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Ann. Phys. 315 (2005) 305 [hep-ph/0401240] [SPIRES].MATHCrossRefADSGoogle Scholar
  22. [22]
    L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [SPIRES].ADSGoogle Scholar
  23. [23]
    M. Flanz, E.A. Paschos, U. Sarkar and J. Weiss, Baryogenesis through mixing of heavy Majorana neutrinos, Phys. Lett. B 389 (1996) 693 [hep-ph/9607310] [SPIRES].ADSGoogle Scholar
  24. [24]
    A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    A. Pilaftsis and T.E.J. Underwood, Electroweak-scale resonant leptogenesis, Phys. Rev. D 72 (2005) 113001 [hep-ph/0506107] [SPIRES].ADSGoogle Scholar
  26. [26]
    S. Nussinov, Technocosmology: could a technibaryon excess provide a ’natural’ missing mass candidate?, Phys. Lett. B 165 (1985) 55 [SPIRES].ADSGoogle Scholar
  27. [27]
    S.M. Barr, Baryogenesis, sphalerons and the cogeneration of dark matter, Phys. Rev. D 44 (1991) 3062 [SPIRES].ADSGoogle Scholar
  28. [28]
    D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [SPIRES].ADSGoogle Scholar
  30. [30]
    S. Dodelson, B.R. Greene and L.M. Widrow, Baryogenesis, dark matter and the width of the Z, Nucl. Phys. B 372 (1992) 467 [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    V.A. Kuzmin, Simultaneous solution to baryogenesis and dark-matter problems, Phys. Part. Nucl. 29 (1998) 257 [hep-ph/9701269] [SPIRES].CrossRefGoogle Scholar
  32. [32]
    R.N. Mohapatra, S. Nussinov and V.L. Teplitz, Mirror matter as self interacting dark matter, Phys. Rev. D 66 (2002) 063002 [hep-ph/0111381] [SPIRES].ADSGoogle Scholar
  33. [33]
    M. Fujii and T. Yanagida, A solution to the coincidence puzzle of ΩB and ΩDM, Phys. Lett. B 542 (2002) 80 [hep-ph/0206066] [SPIRES].ADSGoogle Scholar
  34. [34]
    R. Foot, Mirror matter-type dark matter, Int. J. Mod. Phys. D 13 (2004) 2161 [astro-ph/0407623] [SPIRES].ADSGoogle Scholar
  35. [35]
    D. Hooper, J. March-Russell and S.M. West, Asymmetric sneutrino dark matter and the ΩB /ΩDM puzzle, Phys. Lett. B 605 (2005) 228 [hep-ph/0410114] [SPIRES].ADSGoogle Scholar
  36. [36]
    G.R. Farrar and G. Zaharijas, Dark matter and the baryon asymmetry, Phys. Rev. Lett. 96 (2006) 041302 [hep-ph/0510079] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    S.B. Gudnason, C. Kouvaris and F. Sannino, Towards working technicolor: effective theories and dark matter, Phys. Rev. D 73 (2006) 115003 [hep-ph/0603014] [SPIRES].ADSGoogle Scholar
  38. [38]
    R. Kitano, H. Murayama and M. Ratz, Unified origin of baryons and dark matter, Phys. Lett. B 669 (2008) 145 [arXiv:0807.4313] [SPIRES].ADSGoogle Scholar
  39. [39]
    L. Roszkowski and O. Seto, Axino dark matter from Q-balls in Affleck-Dine baryogenesis and the ΩB -ΩDM coincidence problem, Phys. Rev. Lett. 98 (2007) 161304 [hep-ph/0608013] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    O. Seto and M. Yamaguchi, Axino warm dark matter and ΩB -ΩDM coincidence, Phys. Rev. D 75 (2007) 123506 [arXiv:0704.0510] [SPIRES].ADSGoogle Scholar
  41. [41]
    N. Sahu and U. Sarkar, Extended Zee model for neutrino mass, leptogenesis and sterile neutrino like dark matter, Phys. Rev. D 78 (2008) 115013 [arXiv:0804.2072] [SPIRES].ADSGoogle Scholar
  42. [42]
    K. Kohri, A. Mazumdar and N. Sahu, Inflation, baryogenesis and gravitino dark matter at ultra low reheat temperatures, Phys. Rev. D 80 (2009) 103504 [arXiv:0905.1625] [SPIRES].ADSGoogle Scholar
  43. [43]
    P.-H. Gu, U. Sarkar and X. Zhang, Visible and dark matter genesis and cosmic positron/electron excesses, Phys. Rev. D 80 (2009) 076003 [arXiv:0906.3103] [SPIRES].ADSGoogle Scholar
  44. [44]
    K. Kohri, A. Mazumdar, N. Sahu and P. Stephens, Probing unified origin of dark matter and baryon asymmetry at PAMELA/Fermi, Phys. Rev. D 80 (2009) 061302 [arXiv:0907.0622] [SPIRES].ADSGoogle Scholar
  45. [45]
    P.-H. Gu and U. Sarkar, Common origin of visible and dark universe, Phys. Rev. D 81 (2010) 033001 [arXiv:0909.5463] [SPIRES].ADSGoogle Scholar
  46. [46]
    D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [SPIRES].ADSGoogle Scholar
  47. [47]
    D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells, Atomic dark matter, arXiv:0909.0753 [SPIRES].
  48. [48]
    G.D. Kribs, T.S. Roy, J. Terning and K.M. Zurek, Quirky composite dark matter, arXiv:0909.2034 [SPIRES].
  49. [49]
    H.M. Hodges, Mirror baryons as the dark matter, Phys. Rev. D 47 (1993) 456 [SPIRES].ADSGoogle Scholar
  50. [50]
    R.N. Mohapatra and V.L. Teplitz, Mirror matter MACHOs, Phys. Lett. B 462 (1999) 302 [astro-ph/9902085] [SPIRES].ADSGoogle Scholar
  51. [51]
    R.N. Mohapatra and V.L. Teplitz, Mirror dark matter and galaxy core densities, Phys. Rev. D 62 (2000) 063506 [astro-ph/0001362] [SPIRES].ADSGoogle Scholar
  52. [52]
    Z. Berezhiani, D. Comelli and F.L. Villante, The early mirror universe: inflation, baryogenesis, nucleosynthesis and dark matter, Phys. Lett. B 503 (2001) 362 [hep-ph/0008105] [SPIRES].ADSGoogle Scholar
  53. [53]
    R.N. Mohapatra, S. Nussinov and V.L. Teplitz, Mirror matter as self interacting dark matter, Phys. Rev. D 66 (2002) 063002 [hep-ph/0111381] [SPIRES].ADSGoogle Scholar
  54. [54]
    A.Y. Ignatiev and R.R. Volkas, Mirror dark matter and large scale structure, Phys. Rev. D 68 (2003) 023518 [hep-ph/0304260] [SPIRES].ADSGoogle Scholar
  55. [55]
    Z. Berezhiani, P. Ciarcelluti, D. Comelli and F.L. Villante, Structure formation with mirror dark matter: CMB and LSS, Int. J. Mod. Phys. D 14 (2005) 107 [astro-ph/0312605] [SPIRES].ADSGoogle Scholar
  56. [56]
    P. Ciarcelluti, Cosmology with mirror dark matter. I: linear evolution of perturbations, Int. J. Mod. Phys. D 14 (2005) 187 [astro-ph/0409630] [SPIRES].MathSciNetADSGoogle Scholar
  57. [57]
    L. Bento and Z. Berezhiani, Leptogenesis via collisions: the lepton number leaking to the hidden sector, Phys. Rev. Lett. 87 (2001) 231304 [hep-ph/0107281] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    R.N. Mohapatra, Mechanism for understanding small neutrino mass in superstring theories, Phys. Rev. Lett. 56 (1986) 561 [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon-number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [SPIRES].ADSGoogle Scholar
  60. [60]
    T. Hambye and G. Senjanović, Consequences of triplet seesaw for leptogenesis, Phys. Lett. B 582 (2004) 73 [hep-ph/0307237] [SPIRES].ADSGoogle Scholar
  61. [61]
    S. Antusch and S.F. King, Type II leptogenesis and the neutrino mass scale, Phys. Lett. B 597 (2004) 199 [hep-ph/0405093] [SPIRES].ADSGoogle Scholar
  62. [62]
    R.H. Cyburt, B.D. Fields, K.A. Olive and E. Skillman, New BBN limits on physics beyond the standard model from 4 He, Astropart. Phys. 23 (2005) 313 [astro-ph/0408033] [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  64. [64]
    Z.G. Berezhiani, A.D. Dolgov and R.N. Mohapatra, Asymmetric inflationary reheating and the nature of mirror universe, Phys. Lett. B 375 (1996) 26 [hep-ph/9511221] [SPIRES].MathSciNetADSGoogle Scholar
  65. [65]
    M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [SPIRES].CrossRefADSGoogle Scholar
  66. [66]
    M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [SPIRES].ADSGoogle Scholar
  67. [67]
    H.V. Klapdor-Kleingrothaus et al., Latest results from the Heidelberg-Moscow double beta decay experiment, Eur. Phys. J. A 12 (2001) 147 [hep-ph/0103062] [SPIRES].ADSGoogle Scholar
  68. [68]
    IGEX collaboration, C.E. Aalseth et al., The Igex 76ge neutrinoless double-beta decay experiment: prospects for next generation experiments, Phys. Rev. D 65 (2002) 092007 [hep-ex/0202026] [SPIRES].ADSGoogle Scholar
  69. [69]
    P. Bamert, C.P. Burgess and R.N. Mohapatra, Heavy sterile neutrinos and neutrinoless double beta decay, Nucl. Phys. B 438 (1995) 3 [hep-ph/9408367] [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    P. Benes, A. Faessler, F. Simkovic and S. Kovalenko, Sterile neutrinos in neutrinoless double beta decay, Phys. Rev. D 71 (2005) 077901 [hep-ph/0501295] [SPIRES].ADSGoogle Scholar
  71. [71]
    S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the self-interaction cross-section of dark matter from numerical simulations of the merging galaxy cluster 1E0657 − 5, arXiv:0704.0261 [SPIRES].
  72. [72]
    A. Kurylov and M. Kamionkowski, Generalized analysis of weakly-interacting massive particle searches, Phys. Rev. D 69 (2004) 063503 [hep-ph/0307185] [SPIRES].ADSGoogle Scholar
  73. [73]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. B 78 (1978) 443 [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Haipeng An
    • 1
  • Shao-Long Chen
    • 1
  • Rabindra N. Mohapatra
    • 1
  • Yue Zhang
    • 2
  1. 1.Maryland Center for Fundamental Physics and Department of PhysicsUniversity of MarylandCollege ParkU.S.A.
  2. 2.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations