Advertisement

Photoemission “experiments” on holographic superconductors

  • Thomas Faulkner
  • Gary T. Horowitz
  • John McGreevy
  • Matthew M. Roberts
  • David Vegh
Open Access
Article

Abstract

We study the effects of a superconducting condensate on holographic Fermi surfaces. With a suitable coupling between the fermion and the condensate, there are stable quasiparticles with a gap. We find some similarities with the phenomenology of the cuprates: in systems whose normal state is a non-Fermi liquid with no stable quasiparticles, a stable quasiparticle peak appears in the condensed phase.

Keywords

AdS-CFT Correspondence Spontaneous Symmetry Breaking Black Holes 

References

  1. [1]
    T. Holstein, R.E. Norton and P. Pincus, De Haas-van Alphen effect and the specific heat of an electron gas, Phys. Rev. B 8 (1973) 2649 [SPIRES].ADSGoogle Scholar
  2. [2]
    M.Y. Reizer, Relativistic effects in the electron density of states, specific heat, and the electron spectrum of normal metals, Phys. Rev. B 40 (1989) 11571.ADSGoogle Scholar
  3. [3]
    G. Baym, H. Monien, C.J. Pethick and D.G. Ravenhall, Transverse interactions and transport in relativistic quark-gluon and electromagnetic plasmas, Phys. Rev. Lett. 64 (1990) 1867 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    J. Polchinski, Low-energy dynamics of the spinon gauge system, Nucl. Phys. B 422 (1994) 617 [cond-mat/9303037] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    C. Nayak and F. Wilczek, Non-Fermi liquid fixed point in (2 + 1)-dimensions, Nucl. Phys. B 417 (1994) 359 [cond-mat/9312086] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    C. Nayak and F. Wilczek, Renormalization group approach to low temperature properties of a non-Fermi liquid metal, Nucl. Phys. B 430 (1994) 534 [cond-mat/9408016] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    B.I. Halperin, P.A. Lee and N. Read, Theory of the half filled Landau level, Phys. Rev. B 47 (1993) 7312 [SPIRES].ADSGoogle Scholar
  8. [8]
    B.L. Altshuler, L.B. Ioffe and A.J. Millis, On the low energy properties of fermions with singular interactions, cond-mat/9406024.
  9. [9]
    T. Schafer and K. Schwenzer, Non-Fermi liquid effects in QCD at high density, Phys. Rev. D 70 (2004) 054007 [hep-ph/0405053] [SPIRES].ADSGoogle Scholar
  10. [10]
    D. Boyanovsky and H.J. de Vega, Non-Fermi liquid aspects of cold and dense QED and QCD: equilibrium and non-equilibrium, Phys. Rev. D 63 (2001) 034016 [hep-ph/0009172] [SPIRES].ADSGoogle Scholar
  11. [11]
    S.S. Lee, Low energy effective theory of Fermi surface coupled with U(1) gauge field in 2 + 1 dimensions, arXiv:0905.4532.
  12. [12]
    P.A. Lee and N. Nagaosa, Gauge theory of the normal state of high-Tc superconductors, Phys. Rev. B 46 (1992) 5621 [SPIRES].ADSGoogle Scholar
  13. [13]
    Y.B. Kim, A. Furusaki, P.A. Lee and X-G. Wen, Gauge-invariant response functions of fermions coupled to a gauge field, Phys. Rev. B 50 (1994) 17917.ADSGoogle Scholar
  14. [14]
    Y.B. Kim, P.A. Lee and X-G. Wen, Quantum Boltzmann equation of composite fermions interacting with a gauge field, Phys. Rev. B 52 (1995) 17275.ADSGoogle Scholar
  15. [15]
    V. Oganesyan, S. Kivelson and E. Fradkin, Quantum theory of a nematic Fermi fluid, Phys. Rev. B 64 (2001) 195109 [cond-mat/0102093].ADSGoogle Scholar
  16. [16]
    C. P. Nave and P.A. Lee, Transport properties of a spinon Fermi surface coupled to a U(1) gauge field, Phys. Rev. B 76 (2007) 235124.ADSGoogle Scholar
  17. [17]
    S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [SPIRES].ADSGoogle Scholar
  18. [18]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].
  19. [19]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, arXiv:0907.2694 [SPIRES].
  20. [20]
    M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    S.-J. Rey, String theory on thin semiconductors: holographic realization ofFermi points and surfaces, Prog. Theor. Phys. Suppl. 177 (2009) 128 [arXiv:0911.5295] [SPIRES].MATHCrossRefADSGoogle Scholar
  22. [22]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  23. [23]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].MATHMathSciNetGoogle Scholar
  24. [24]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    S. Sachdev and M. Mueller, Quantum criticality and black holes, arXiv:0810.3005 [SPIRES].
  26. [26]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].Google Scholar
  28. [28]
    J. McGreevy, Holographic duality with a view toward many-body physics, arXiv:0909.0518 [SPIRES].
  29. [29]
    C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams and A.E. Ruckenstein, Phenomenology of the normal state of Cu-O high-temperature superconductors, Phys. Rev. Lett. 63 (1989) 1996 [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Transport by holographic non-Fermi liquids, to appear.Google Scholar
  31. [31]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  32. [32]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    J.G. Bednorz and K.A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B 64 (1986) 189.CrossRefADSGoogle Scholar
  35. [35]
    P. Gegenwart, Q. Si and F. Steglich, Quantum criticality in heavy-fermion metals, Nat. Phys. 4 (2008) 186.CrossRefGoogle Scholar
  36. [36]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Emergent quantum near-criticality from baryonic black branes, arXiv:0911.0400 [SPIRES].
  37. [37]
    S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [SPIRES].ADSGoogle Scholar
  38. [38]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, arXiv:0911.3586 [SPIRES].
  39. [39]
    F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    E. Silverstein, TASI/PiTP / ISS lectures on moduli and microphysics, hep-th/0405068 [SPIRES].
  41. [41]
    F. Denef, M.R. Douglas and S. Kachru, Physics of string flux compactifications, Ann. Rev. Nucl. Part. Sci. 57 (2007) 119 [hep-th/0701050] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    F. Denef, Les Houches lectures on constructing string vacua, arXiv:0803.1194 [SPIRES].
  45. [45]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    X.J. Zhou et al., Angle-resolved photoemission spectroscopy on electronic structure and electron-phonon coupling in cuprate superconductors, in Handbook of high-temperature superconductivity: theory and experiment, J.R. Schrieffer ed., Springer (2007), see page 87, cond-mat/0604284.
  47. [47]
    J.C. Campuzano, M.R. Norman and M. Randeria, Photoemission in the high Tc superconductors, in Handbook of physics: physics of conventional and unconventional superconductors, K.H. Bennemann and J.B. Ketterson eds., Springer Verlag, (2004), cond-mat/0209476.
  48. [48]
    J.-W. Chen, Y.-J. Kao and W.-Y. Wen, Peak-dip-hump from holographic superconductivity, arXiv:0911.2821 [SPIRES].
  49. [49]
    S.S. Gubser, F.D. Rocha and P. Talavera, Normalizable fermion modes in a holographic superconductor, arXiv:0911.3632 [SPIRES].
  50. [50]
    A. Adams, to appear.Google Scholar
  51. [51]
    M.G. Alford, A. Schmitt, K. Rajagopal and T. Schafer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [SPIRES].ADSGoogle Scholar
  54. [54]
    J. Polchinski, String Theory. Volume 2, Cambridge University Press, Cambridge U.K. (2005), see appendix B.Google Scholar
  55. [55]
    N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  56. [56]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].ADSGoogle Scholar
  57. [57]
    F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev. D 80 (2009) 126016 [arXiv:0908.1788] [SPIRES].ADSGoogle Scholar
  58. [58]
    F. Denef, S.A. Hartnoll and S. Sachdev, Black hole determinants and quasinormal modes, arXiv:0908.2657 [SPIRES].
  59. [59]
    A. Damascelli, Z. Hussain and Z.X. Shen, Angle-resolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys. 75 (2003) 473 [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    S.S. Gubser and A. Yarom, Pointlike probes of superstring-theoretic superfluids, arXiv:0908.1392 [SPIRES].
  61. [61]
    R. Haussmann, M. Punk and W. Zwerger, Spectral functions and rf response of ultracold fermionic atoms, to appear in Phys. Rev. A (2010), arXiv:0904.1333.

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Thomas Faulkner
    • 1
  • Gary T. Horowitz
    • 2
  • John McGreevy
    • 3
  • Matthew M. Roberts
    • 2
  • David Vegh
    • 3
    • 4
  1. 1.KITPSanta BarbaraU.S.A.
  2. 2.Department of PhysicsUCSBSanta BarbaraU.S.A.
  3. 3.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.
  4. 4.Simons Center for Geometry and PhysicsStony Brook UniversityStony BrookU.S.A.

Personalised recommendations