Advertisement

Quantum field theory, gravity and cosmology in a fractal universe

  • Gianluca Calcagni
Open Access
Article

Abstract

We propose a model for a power-counting renormalizable field theory living in a fractal spacetime. The action is Lorentz covariant and equipped with a Stieltjes measure. The system flows, even in a classical sense, from an ultraviolet regime where spacetime has Hausdorff dimension 2 to an infrared limit coinciding with a standard D-dimensional field theory. We discuss the properties of a scalar field model at classical and quantum level. Classically, the field lives on a fractal which exchanges energy-momentum with the bulk of integer topological dimension D. Although an observer experiences dissipation, the total energy-momentum is conserved. The field spectrum is a continuum of massive modes. The gravitational sector and Einstein equations are discussed in detail, also on cosmological backgrounds. We find ultraviolet cosmological solutions and comment on their implications for the early universe.

Keywords

Models of Quantum Gravity Cosmology of Theories beyond the SM 

References

  1. [1]
    P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [SPIRES].ADSGoogle Scholar
  2. [2]
    P. Hořava, Spectral dimension of the universe in quantum gravity at a Lifshitz point, Phys. Rev. Lett. 102 (2009) 161301 [arXiv:0902.3657] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    M. Visser, Lorentz symmetry breaking as a quantum field theory regulator, Phys. Rev. D 80 (2009) 025011 [arXiv:0902.0590] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    M. Visser, Power-counting renormalizability of generalized Hořava gravity, arXiv:0912.4757 [SPIRES].
  5. [5]
    S. Alexander and R. Orbach, Density of states on fractals: fractons, J. Phys. Lett. 43 (1982) 625.CrossRefGoogle Scholar
  6. [6]
    R. Rammal and G. Toulouse, Random walks on fractal structures and percolation clusters, J. Phys. Lett. 44 (1983) 13.CrossRefGoogle Scholar
  7. [7]
    J. Ambjørn, J. Jurkiewicz and Y. Watabiki, On the fractal structure of two-dimensional quantum gravity, Nucl. Phys. B 454 (1995) 313 [hep-lat/9507014] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    D. ben-Avraham and S. Havlin, Diffusion and reactions in fractals and disordered systems, Cambridge University Press, Cambridge U.K. (2000).MATHCrossRefGoogle Scholar
  9. [9]
    J. Ambjørn, J. Jurkiewicz and R. Loll, Spectral dimension of the universe, Phys. Rev. Lett. 95 (2005) 171301 [hep-th/0505113] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    O. Lauscher and M. Reuter, Fractal spacetime structure in asymptotically safe gravity, JHEP 10 (2005) 050 [hep-th/0508202] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    L. Modesto, Fractal structure of loop quantum gravity, Class. Quant. Grav. 26 (2009) 242002 [arXiv:0812.2214] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    D. Benedetti, Fractal properties of quantum spacetime, Phys. Rev. Lett. 102 (2009) 111303 [arXiv:0811.1396] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    G. Calcagni, Cosmology of the Lifshitz universe, JHEP 09 (2009) 112 [arXiv:0904.0829] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    G. Calcagni, Detailed balance in Hořava-Lifshitz gravity, Phys. Rev. D 81 (2010) 044006 [arXiv:0905.3740] [SPIRES].ADSGoogle Scholar
  15. [15]
    J. Collins, A. Perez, D. Sudarsky, L. Urrutia and H. Vucetich, Lorentz invariance and quantum gravity: an additional fine-tuning problem?, Phys. Rev. Lett. 93 (2004) 191301 [gr-qc/0403053] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    J. Collins, A. Perez and D. Sudarsky, Lorentz invariance violation and its role in quantum gravity phenomenology, hep-th/0603002 [SPIRES].
  17. [17]
    R. Iengo, J.G. Russo and M. Serone, Renormalization group in Lifshitz-type theories, JHEP 11 (2009) 020 [arXiv:0906.3477] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    P. Hořava et al., Quantum gravity with anisotropic scaling, discussion at Gravity at a Lifshitz point workshop, Perimeter Institute Waterloo Canada November 8–10 2009.Google Scholar
  19. [19]
    K. Falconer, Fractal geometry, Wiley, New York U.S.A. (2003).MATHCrossRefGoogle Scholar
  20. [20]
    G. Calcagni, Fractal universe and quantum gravity, arXiv:0912.3142 [SPIRES].
  21. [21]
    K. Svozil, Quantum field theory on fractal space-time, J. Phys. A 20 (1987) 3861 [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    G. Eyink, Quantum field theory models on fractal space-time. 1: introduction and overview, Commun. Math. Phys. 125 (1989) 613 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    G. Eyink, Quantum field theory models on fractal space-time. 2: hierarchical propagators, Commun. Math. Phys. 126 (1989) 85 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    C.G. Bollini and J.J. Giambiagi, Dimensional renormalization: the number of dimensions as a regularizing parameter, Nuovo Cim. B 12 (1972) 20 [SPIRES].Google Scholar
  25. [25]
    G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    F.B. Tatom, The relationship between fractional calculus and fractals, Fractals 3 (1995) 217.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    M. Moshrefi-Torbati and J.K. Hammond, Physical and geometrical interpretation of fractional operators, J. Franklin Inst. B 335 (1998) 1077.CrossRefMathSciNetGoogle Scholar
  28. [28]
    F.-Y. Ren, Z.-G. Yu and F. Su, Fractional integral associated to the self-similar set or the generalized self-similar set and its physical interpretation, Phys. Lett. A 219 (1996) 59.MathSciNetADSGoogle Scholar
  29. [29]
    Z.-G. Yu, F.-Y. Ren and J. Zhou, Fractional integral associated to generalized cookie-cutter set and its physical interpretation, J. Phys. A 30 (1997) 5569.MathSciNetADSGoogle Scholar
  30. [30]
    W.-Y. Qiu and J. Lü, Fractional integrals and fractal structure of memory sets, Phys. Lett. A 272 (2000) 353.ADSGoogle Scholar
  31. [31]
    F.-Y. Ren, W.-Y. Qiu, J.-R. Liang and X.-T. Wang, Determination of memory function and flux on fractals, Phys. Lett. A 288 (2001) 79.MathSciNetADSGoogle Scholar
  32. [32]
    F.-Y. Ren, J.-R. Liang, X.-T. Wang and W.-Y. Qiu, Integrals and derivatives on net fractals, Chaos Solitons Fractals 16 (2003) 107.MATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    R.R. Nigmatullin, Fractional integral and its physical interpretation, Theor. Math. Phys. 90 (1992) 242.CrossRefMathSciNetGoogle Scholar
  34. [34]
    Y.S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Springer-Verlag, Berlin Germany (2008).MATHCrossRefGoogle Scholar
  35. [35]
    S. Das, Functional fractional calculus, Springer-Verlag, Berlin Germany (2008).MATHGoogle Scholar
  36. [36]
    K.S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York U.S.A. (1993).MATHGoogle Scholar
  37. [37]
    K. Cotrill-Shepherd and M. Naber, Fractional differential forms, J. Math. Phys. 42 (2001) 2203 [math-ph/0301013].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    V.E. Tarasov, Fractional generalization of Liouville equations, Chaos 14 (2004) 123 [nlin/0312044] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    V.E. Tarasov, Fractional systems and fractional Bogoliubov hierarchy equations, Phys. Rev. E 71 (2005) 011102 [COND-MAT/0505720].MathSciNetADSGoogle Scholar
  40. [40]
    V.E. Tarasov, Fractional generalization of gradient and Hamiltonian systems, J. Phys. A 38 (2005) 5929 [math.DS/0602208].MathSciNetADSGoogle Scholar
  41. [41]
    S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional integrals and derivatives, Gordon and Breach, New York U.S.A. (1993).MATHGoogle Scholar
  42. [42]
    V.E. Tarasov, Magnetohydrodynamics of fractal media, Phys. Plasmas 13 (2006) 052107.CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    F. Riesz and B. Sz.-Nagy, Functional analysis, Dover, New York U.S.A. (1990).MATHGoogle Scholar
  44. [44]
    M. Carter and B. van Brunt, The Lebesgue-Stieltjes integral: a practical introduction, Springer, New York U.S.A. (2000).MATHGoogle Scholar
  45. [45]
    G. de Barra, Measure theory and integration, Horwood Publishing, Chichester U.K. (2003).MATHGoogle Scholar
  46. [46]
    G.L. Bullock, A geometric interpretation of the Riemann-Stieltjes integral, Am. Math. Mon. 95 (1988) 448.MATHCrossRefMathSciNetGoogle Scholar
  47. [47]
    I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal. 5 (2002) 367 [math.CA/0110241].MATHMathSciNetGoogle Scholar
  48. [48]
    A. Zeilinger and K. Svozil, Measuring the dimension of space-time, Phys. Rev. Lett. 54 (1985) 2553 [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    C. Jarlskog and F.J. Yndurain, Is the number of spatial dimensions an integer?, Europhys. Lett. 1 (1985) 51 [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    B. Müller and A. Schafer, Improved bounds on the dimension of space-time, Phys. Rev. Lett. 56 (1986) 1215 [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    F. Caruso and V. Oguri, The cosmic microwave background spectrum and a determination of fractal space dimensionality, Astrophys. J. 694 (2009) 151 [arXiv:0806.2675] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    V.I. Shevchenko, Phenomenology of scale-dependent space-time dimension, arXiv:0903.0565 [SPIRES].
  53. [53]
    R. Gastmans, R. Kallosh and C. Truffin, Quantum gravity near two-dimensions, Nucl. Phys. B 133 (1978) 417 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    S.M. Christensen and M.J. Duff, Quantum gravity in 2 + ϵ dimensions, Phys. Lett. B 79 (1978) 213 [SPIRES].ADSGoogle Scholar
  55. [55]
    S. Weinberg, Ultraviolet divergences in quantum gravity, in General relativity, an Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979).Google Scholar
  56. [56]
    H. Kawai and M. Ninomiya, Renormalization group and quantum gravity, Nucl. Phys. B 336 (1990) 115 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  57. [57]
    I. Jack and D.R.T. Jones, The ϵ-expansion of two-dimensional quantum gravity, Nucl. Phys. B 358 (1991) 695 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  58. [58]
    H. Kawai, Y. Kitazawa and M. Ninomiya, Ultraviolet stable fixed point and scaling relations in (2 + ϵ)-dimensional quantum gravity, Nucl. Phys. B 404 (1993) 684 [hep-th/9303123] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  59. [59]
    T. Aida, Y. Kitazawa, J. Nishimura and A. Tsuchiya, Two loop renormalization in quantum gravity near two-dimensions, Nucl. Phys. B 444 (1995) 353 [hep-th/9501056] [SPIRES].CrossRefADSGoogle Scholar
  60. [60]
    A. Bonanno and M. Reuter, Cosmology of the Planck era from a renormalization group for quantum gravity, Phys. Rev. D 65 (2002) 043508 [hep-th/0106133] [SPIRES].MathSciNetADSGoogle Scholar
  61. [61]
    M. Reuter and F. Saueressig, From big bang to asymptotic de Sitter: complete cosmologies in a quantum gravity framework, JCAP 09 (2005) 012 [hep-th/0507167] [SPIRES].MathSciNetADSGoogle Scholar
  62. [62]
    A. Bonanno and M. Reuter, Entropy signature of the running cosmological constant, JCAP 08 (2007) 024 [arXiv:0706.0174] [SPIRES].ADSGoogle Scholar
  63. [63]
    R. Mansouri and F. Nasseri, A model universe with variable space dimension: Its dynamics and wave function, Phys. Rev. D 60 (1999) 123512 [gr-qc/9902043] [SPIRES].ADSGoogle Scholar
  64. [64]
    D. Hochberg and J.T. Wheeler, Space-time dimension from a variational principle, Phys. Rev. D 43 (1991) 2617 [SPIRES].ADSGoogle Scholar
  65. [65]
    R.A. El-Nabulsi, A fractional action-like variational approach of some classical, quantum and geometrical dynamics, Int. J. Appl. Math. 17 (2005) 299.MATHMathSciNetGoogle Scholar
  66. [66]
    R.A. El-Nabulsi, A fractional approach to nonconservative Lagrangian dynamical systems, Fizika A 14 (2005) 289.Google Scholar
  67. [67]
    G.S.F. Frederico and D.F.M. Torres, Constants of motion for fractional action-like variational problems, Int. J. Appl. Math. 19 (2006) 97 [math.OC/0607472].MATHMathSciNetGoogle Scholar
  68. [68]
    R.A. El-Nabulsi and D.F.M. Torres, Fractional actionlike variational problems, J. Math. Phys. 49 (2008) 053521 [arXiv:0804.4500].CrossRefMathSciNetADSGoogle Scholar
  69. [69]
    C. Udrişte and D. Opris, Euler-Lagrange-Hamilton dynamics with fractional action, WSEAS Trans. Math. 7 (2008) 19.MathSciNetGoogle Scholar
  70. [70]
    R.A. El-Nabulsi, Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems, Chaos Solitons Fractals 42 (2009) 52.CrossRefMathSciNetGoogle Scholar
  71. [71]
    R.A. El-Nabulsi, Fractional Dirac operators and deformed field theory on Clifford algebra, Chaos Solitons Fractals 42 (2009) 2614.CrossRefMathSciNetGoogle Scholar
  72. [72]
    D.S. Djukic and D.B. Vujanovic, Noether’s theory in classical nonconservative mechanics, Acta Mech. 23 (1975) 17.MATHCrossRefMathSciNetADSGoogle Scholar
  73. [73]
    C.F. Lorenzo and T.T. Hartley, Initialized fractional calculus, Int. J. Appl. Math. Comput. Sci. 3 (2000) 249.MATHMathSciNetGoogle Scholar
  74. [74]
    B.N. Narahari Achar, C.F. Lorenzo and T.T. Hartley, Initialization issues of the Caputo fractional derivative, ASME Conf. Proc. 2005-47438 (2005) 1449.Google Scholar
  75. [75]
    C.F. Lorenzo and T.T. Hartley, Initialization of fractional-order operators and fractional differential equations, J. Comput. Nonlinear Dynam. 3 (2008) 021101.CrossRefGoogle Scholar
  76. [76]
    Y. Peleg, Change of dimensions in canonical pure gravity via nonunitarity, Mod. Phys. Lett. A 6 (1991) 2569 [SPIRES].MathSciNetADSGoogle Scholar
  77. [77]
    C.G. Bollini, J.J. Giambiagi and A. Gonzáles Domínguez, Analytic regularization and the divergences of quantum field theories, Nuovo Cim. 31 (1964) 550.CrossRefGoogle Scholar
  78. [78]
    J.J. Giambiagi, Huygens’ principle in (2n + 1)-dimensions for nonlocal pseudodifferential operators of the typeα, Nuovo Cim. A 104 (1991) 1841 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  79. [79]
    C.G. Bollini, J.J. Giambiagi and O. Obregon, Criteria to fix the dimensionality corresponding to some higher derivative Lagrangians, Mod. Phys. Lett. B 7 (1992) 593 [SPIRES].MathSciNetGoogle Scholar
  80. [80]
    C.G. Bollini and J.J. Giambiagi, Arbitrary powers of D’Alembertians and the Huygens’ principle, J. Math. Phys. 34 (1993) 610 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  81. [81]
    R.L.P. do Amaral and E.C. Marino, Canonical quantization of theories containing fractional powers of the d’Alembertian operator, J. Phys. A 25 (1992) 5183.MathSciNetADSGoogle Scholar
  82. [82]
    D.G. Barci, C.G. Bollini, L.E. Oxman and M.C. Rocca, Lorentz-invariant pseudo-differential wave equations, Int. J. Theor. Phys. 37 (1998) 3015 [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  83. [83]
    D.G. Barci, L.E. Oxman and M. Rocca, Canonical quantization of nonlocal field equations, Int. J. Mod. Phys. A 11 (1996) 2111 [hep-th/9503101] [SPIRES].MathSciNetADSGoogle Scholar
  84. [84]
    I.M. Gel’fand and G.E. Shilov, Generalized functions, volume I, Academic Press, New York U.S.A. (1964).Google Scholar
  85. [85]
    I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, Academic Press, London U.K. (2007).Google Scholar
  86. [86]
    S. Weinberg, Gravitation and cosmology, Wiley, New York U.S.A. (1972).Google Scholar
  87. [87]
    C. Brans and R.H. Dicke, Mach’s principle and a relativistic theory of gravitation, Phys. Rev. 124 (1961) 925 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  88. [88]
    A. De Felice, G. Mangano, P.D. Serpico and M. Trodden, Relaxing nucleosynthesis constraints on Brans-Dicke theories, Phys. Rev. D 74 (2006) 103005 [astro-ph/0510359] [SPIRES].ADSGoogle Scholar
  89. [89]
    S.W. Hawking, Perturbations of an expanding universe, Astrophys. J. 145 (1966) 544 [SPIRES].CrossRefADSGoogle Scholar
  90. [90]
    G.F.R. Ellis, Relativistic cosmology, in General relativity and cosmology, proceedings of the XLVII Enrico Fermi summer school, R.K. Sachs ed., Academic Press, New York U.S.A. (1971).Google Scholar
  91. [91]
    G.F.R. Ellis and M. Bruni, Covariant and gauge invariant approach to cosmological density fluctuations, Phys. Rev. D 40 (1989) 1804 [SPIRES].MathSciNetADSGoogle Scholar
  92. [92]
    M.S. Madsen, Scalar fields in curved space-times, Class. Quant. Grav. 5 (1988) 627 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  93. [93]
    S. Alexander and T. Biswas, The cosmological BCS mechanism and the big bang singularity, Phys. Rev. D 80 (2009) 023501 [arXiv:0807.4468] [SPIRES].ADSGoogle Scholar
  94. [94]
    S. Alexander, T. Biswas and G. Calcagni, Cosmological Bardeen-Cooper-Schrieffer condensate as dark energy, Phys. Rev. D 81 (2010) 043511 [arXiv:0906.5161] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Max Planck Institute for Gravitational Physics (Albert Einstein Institute)GolmGermany

Personalised recommendations